
D
ra
ft

Update of the SCARAB robot to sort valuable items in containers of
residual waste

Daniel Reischl1, Johannes Wenninger, Simon Zwirtmayr and Johannes Schröck

Abstract—In this paper the features of the autonomous
mobile robot SCARAB are extended. SCARAB is now not
only exchanging full waste containers with empty ones but also
sorting out the valuable objects of the waste. For this task, a
gripper was added to the robot’s end-of-arm tool. The fingers of
the gripper have a Fin Ray design to robustly grasp the objects.
Adaptions of the waste container allow to empty the waste onto
a sorting table without additional actuators. Object detection
is done with a YOLOv8 model which was initially trained with
an open data set and improved with additional training data.
In order to label this training data a standalone tool based
on the Segment Anything Model (SAM) was developed. The
paper shows the mechanical design of the gripper fingers, the
adaption of the waste container as well as the design of a
suitable sorting table. It is demonstrated that the waste sorting
task is carried out robustly without the need of any additional
expensive equipment.

Index Terms—object detection, segmentation, waste sorting

I. INTRODUCTION

Automated image-based recognition and sorting of waste
using robots is already being used commercially world-
wide. Companies such as ZenRobotics, WasteRobotics, AMP
Robotics, Recycleye, Machinex, Bollegraaf, Green Machine
and many others offer solutions for efficient sorting on a
conveyor belt. However, efficient object recognition is also
still a topic of research [7].
This paper, however, is not about a highly efficient imple-

mentation of a waste sorting system with expensive cameras
and fast delta robots. Our focus is on the subsequent and
cost-effective retrofitting of an existing robot, which is used
already to autonomously exchange full waste containers for
empty ones.
The development platform SCARAB [10] was able to

collect full waste containers on demand autonomously and
bring them back to a garage. With this setup however it
was not possible to sort the waste and all the waste was
treated as ”residual waste”. In January 2025 a deposit on non-
returnable containers was put into force in Austria [1], which
changed the requirements for the SCARAB platform. As
minimum requirement, at least the containers (bottles, cans,
etc.) which are subject of the deposit have to be identified
and separated of the waste automatically. In this paper the
challenges of adapting an existing mobile robot to this new
task are described as well as the technical solutions applied
for a successful implementation.

1All authors are with Linz Center of Mechatronics GmbH, Altenberger
Straße 69, 4040 Linz, Austria daniel.reischl@lcm.at

Fig. 1. SCARAB during operation while changing the container.

II. SCARAB DEVELOPMENT PLATFORM

The mobile robot SCARAB shown in Fig. 1 was designed
to drive autonomously in a semi-public area and exchange
the full waste containers. As presented in [10], a sensor in
the waste container reports the filling height and a mission to
exchange the container is initiated, if the boundary conditions
(e.g. weather) are fulfilled. The entire process is not time-
critical and the main focus is on personal safety. The new
task of sorting waste is therefore carried out in a locked
garage to which no passers-by have access. The garage
door is controlled automatically via the higher-level mission
control system.
After returning back to the garage, SCARAB is now

driving to a sorting table. The full waste container is emptied
onto the sorting table with the robot arm. No additional
actuators or sensors are necessary for the robotic arm or
the waste container as shown in section III in more detail.
The pile of waste on the sorting table is slightly distributed
by a statically programmed movement of the robot arm to
facilitate object recognition. A picture of the waste is taken
with the wrist camera of the robotic arm. Based on this
picture, the valuable items in the waste are detected, as shown
in section IV. The recognized objects are sorted out of the
waste one by one and separated in the appropriate containers.
The waste remaining after the sorting process can then be
fed into an appropriate residual waste container by tilting the
sorting table. Once the sorting process is complete, SCARAB
picks up the empty waste bin and moves to the charging
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Fig. 2. Already existing passive end of arm tool with Realsense camera
and LED lights to manipulate the containers.

station to wait for its next mission.

III. MECHANICAL ADAPTIONS

The design of SCARAB should not be changed, but addi-
tional features are necessary to perform the sorting process.
In order to solve this challenge, mechanical adaptions of the
waste containers were necessary as well as to add a sorting
table and a gripper.

A. Container

The waste bin has a lid with an integrated fill level sensor.
This configuration with lid and the robot end effector, which
picks up the waste bin via a form-fit connection shown in
Fig. 2, do not allow the bin to be emptied by turning it over.
A mechanism has therefore been developed that allows

the base of the container to be opened. This mechanism
opens the base when the container is pressed against the
rear wall of the sorting table with the robot arm, shown in
Fig. 3 and Fig. 4. After the contents of the container have
fallen out, the bottom of the container is closed again with
a suitable trajectory. Both processes, opening and closing,
are carried out without additional actuators but solely by
pressing the container against the sorting table. The empty
waste container is put on a fixture and the robotic arm with
the gripper is now free for the sorting task.

B. Sorting table

A suitable sorting table was set up, which allows SCARAB
to attach the waste container to the table and then move
partially under the table itself. In this way, it is possible to
optimize the working space of the robot arm. The sorting
table has 2 storage bins, to the left and right of the sorting
surface, into which the cans and bottles are deposited. Once
the sorting process is complete, the sorting area can be tilted
with the robot arm and the remaining waste falls into a
residual waste container, as shown in Fig. 5. The sorting
table is not equipped with any actuators or electronics.

C. Gripper

A passive gripper system was originally developed for
manipulating the waste containers to ensure the most robust

Fig. 3. Mechanism to open the container at the bottom without actuators
by pressing the container to the rear wall of the sorting table.

Fig. 4. Container with opened bottom. The container will be placed on
the fixture after closing the bottom.

Fig. 5. The sorting table is also operated by the robotic arm without
additional actuators.
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Fig. 6. Different designs of the gripper: Left with rigid fingers, right with
fin ray design. In the right figure, the Gimatic gripper is shown in red and
blue and the capacitor box is under the lid with the LCM logo.

and safe handling possible. However, a gripper is now
required for sorting the waste.
A self-centring electric angle gripper from Gimatic was

used as the gripper for sorting the waste. This fulfils the
special requirements in terms of available installation space,
closing force and compatibility with the robot arm. The
exact type of gripper is ‘MPBM3240’. The gripper re-
quires additional external control electronics (Capacitor Box
CAPBOX3200-03), which must be used to provide the power
for the Gimatic gripper. Without these electronics, the power
requirement at the pins on the wrist of the UR10e robot arm
could not be covered. Furthermore, different fingers can be
used thanks to the modular design. The gripper also allows
rapid adaptation to other problems, as the fingers can be
created and customised using rapid prototyping.
As the available installation space is very limited in the

folded state, the angular gripper was integrated into the
existing robot end effector to save as much space as possible.
An adapter plate was designed for this purpose, which must
be fitted to the robot’s wrist in the first assembly step.
The Gimatic angular gripper can then be screwed onto this
adapter and fixed in place. The electronics of the Capacitor
Box are located directly in front of the gripper on the robot
end effector. The original robot end effector has been adapted
accordingly so that it can be mounted on the adapter with
the Intel Realsense camera fitted.
The first version of the fingers was 3D-printed from TPU

(thermoplastic material) and is shown in Fig. 6. As the
narrow design of the fingers led to twisting when gripping
and different objects were not always gripped correctly, a
new finger design was tested.
The new design of the fingers was based on the so-called

Fin Ray design, which has already been successfully used
in the literature to grasp variable shapes, [8], [3], [11]. This
design is originally biologically inspired by the tail fins of
fish and patented by the company Evologics GmbH. The
company Festo offers commercial products of gripper fingers
based on this concept. The soft gripper used in our studies
is lightweight (entirely 3D-printed from TPU), has a simple
structure, high compliance and adaptability, and is capable
of grasping objects of any geometry. Fig. 7 shows how the
principle of the Fin Ray design works: In the unloaded
state, the design retains its original shape. If any object is
gripped (for example an already deformed aluminium can),
the gripper automatically adapts to the shape of the object.
This enables various objects to be gripped safely. As the

Fig. 7. Elastic fingers with fin ray design in opened and closed config-
uration. (The LED lights still need to be installed next to the Realsense
camera.)

inner gripper surfaces are aligned parallel to each other in
the open state, the object is automatically pressed towards
the gripper when gripping.
It is also important to mention that the material of the

functional model (except the fingers) is PLA (polylactide).
PLA is not resistant to ultraviolet radiation (UV) and should
be replaced with a UV-resistant material if necessary. If the
first tests are successful, a change to the commercial product
of FESTO will be considered.

IV. MANIPULATING THE OBJECTS

In order to sort out the valuable objects, it is necessary to
identify them within the residual waste, grab them robustly
and place them in separate containers.

A. Segmentation with YOLOv8 model

An instance segmentation model was selected in order to
not only obtain a bounding box of the objects, but also to
detect the exact contour of the waste object. This property
is important in the later calculation of the gripping point in
order to be able to analyse the shape of the object. Therefore,
a YoloV8 model [5] was used to detect the valuable parts of
the waste.
The model was first trained with the TACO dataset [9],

an open image dataset of waste in the wild. This dataset has
63 classes of objects but only ”clear plastic bottle”, ”drink
can” and ”food can” are used in our work.
To create additional training images, the waste container

was filled and opened several times from a defined height
in the center of the table. In total 200 photos were taken of
different waste distributions on the table. 160 photos were
used for training and 40 for validation. A semi-automatic
labeling tool was developed as all contours of the objects
must first be labeled for each photo in order to be able to
train the network later. This would be very time-consuming
with manual labeling. The Segment Anything Model (SAM)
[6] implemented by Meta was used for this purpose, which
saves a great deal of time when labeling the waste objects.
The online version of SAM can not be used for generating
the training data as no labels are available. Meta provides the
code as open source and it was possible to use this code for
developing a standalone offline tool for labeling the images
taken in our lab. The workflow is the following:
1) Click on a single object in the image and SAM will

highlight automatically (at least a part) of the object.
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offline tool based on SAM.

2) Add or substract parts of the object by continue click-
ing with the mouse.

3) When the entire object is highlighted, enter the appro-
priate label for the object.

4) Continue with the next object in the image.
5) When all objects in the image are labeled, continue to

the next image.
Comparing Fig. 8 and Fig. 9 shows the good results of the

segmentation algorithm, including concealed and deformed
objects. For the manual labeling only the classes ”food can”
and ”clear plastic bottle” have been used, which will be
called ”bottle” and ”can” in the following.

B. Gripping pose

The Realsense camera is used to find the gripping positions
of the objects. The first step is to take a 2D photo and a depth
image with the camera mounted on the robotic arm from a
well defined position right above the sorting table.
With the YoloV8 model, the objects are segmented in the

2D photo and processed one after the other. As output of
the YoloV8 model the contour of each object is provided in
2D together with a label and a numerical value for the confi-
dence, as shown in Fig. 10 for a bottle which is obstructed by
a sheet of paper. With the function minAreaRect of OpenCV
library [2] the center point, orientation and main axis of
the object contour are computed. The distance between the
camera and the gripping point is determined with an ArUco
marker [4]. The 3D position of this gripping point can then

Fig. 9. Validation of the segmentation: Result of the YOLOv8 model with
the same picture as in the training.

be calculated using the usual camera calibration algorithms.
The following assumptions are made in order to calculate the
6D pose of the gripping point from the position: The gripper
is parallel to the image plane and rotated around the global
vertical axis corresponding to the rotation of the 2D object
contour, as shown in Fig. 11. A safe gripping of the objects
was observed, even in the cases when only small parts of the
object are visible, as shown in Fig. 12.

V. TEST RESULTS

The robustness of the waste sorting process described
above was tested extensively. The objects to be sorted out
of the residual waste were not part of the training data and
can be seen in Fig. 13. The test data consists of 4 bottles
and 5 cans. In addition to these desired objects, the test
waste contains 15 disturbing objects, which were also not
part of the training data: Plastic packaging films, cardboard
and paper.
The tests were done in the following way:
1) fill the waste (desired and disturbing objects) into the

bin and mix thoroughly
2) empty the waste on the sorting table
3) distribute the waste with the robotic arm
4) take a picture of the waste
5) grasp a desired object and put it into the bins next to

the sorting table
6) repeat steps (4) and (5) until no more desired objects

are detected
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Fig. 10. Output of the YoloV8 model: visible contour (shown in green)
and label (with confidence) of the object.

Fig. 11. Computation of the gripping point: bounding box (light blue
rectangular) with center point and its rotation in degree.

Fig. 12. Gripping in the center of the bounding box of the (visible) contour
of the bottle.

Fig. 13. Test objects with their classes according to the YoloV8 model.
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Fig. 14. Results of the tests with different settings of the confidence
parameter

These tests were repeated multiple times with different
settings. The most significant parameter regarding the per-
formance of the sorting process was the confidence of the
segmentation step. A low confidence value leads to a high
number of successfully picked objects. However, you have to
accept that a few unwanted objects will also be picked up. In
Fig. 14 the results of the tests are shown. The optimal result
would be to pick 9 out of 9 desired objects and 0 out of 15
disturbing objects. If the same result was observed multiple
times with the same setting, the result is still just shown as
a single point in the graph. The graph shows, that it was
not possible to reach the optimal result with any setting and
that it was not possible to strictly avoid grasping disturbing
objects. However with setting the confidence to 50% it was
possible to reach a robust result of picking all desired objects
while accepting to pick 1 to 3 of the 15 disturbing objects.
A more detailed evaluation of the detection process was

done to study the influence of the confidence value. For each
of the 150 photos taken during the tests, it was analyzed
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TABLE I
INFLUENCE OF THE CONFIDENCE SETTINGS ON THE DETECTION RATE.

AVERAGE VALUES BASED ON 150 IMAGES.

confidence setting correct detected objects wrong objects per image
0.50 83% 0.57
0.65 40% 0.19
0.85 34% 0.17

TABLE II
RECORDED TIME FOR THE OBJECT DETECTION IN SECONDS. AVERAGE

VALUES BASED ON THE RECORDING OF 16 OBJECTS.

take picture 0.046
preprocess picture 0.056
segment object (incl. saving the picture) 2.182
compute bounding box 0.158
compute gripping pose (incl. 2 coordinate transformations) 0.010

how many of the desired objects depicted were correctly
recognized and how many of the undesired objects were
erroneously marked. The average values for the 3 different
settings can be seen in Table I. The value for the ”wrong
objects per image” is an absolute value and is between 0.17
and 0.57 objects per image. The correctly detected objects
are given as percentage of the desired objects in the image
and differs between 34% for a high confidence value and
83% for a low confidence value.
The time required for object recognition depends heavily

on the hardware used. In the tests shown here, the photo
was taken using a Realsense camera, the data was read out
via the RTDE interface of the Universal Robot and then
analyzed with a Python script. The evaluation was carried
out on a NUC (Next Unit Computing). All computations are
performed locally with hardware located in the SCARAB
platform. The duration of the individual steps is shown in
Table II.

VI. SUMMARY AND OUTLOOK

It was demonstrated how the functionality of an existing
mobile robot was extended with low cost hardware to add the
feature of waste sorting. The low amount of training data in
the lab still limits the quality of the overall performance but
was sufficient to find the most significant parameter. A good
choice of the limit for the confidence in the segmentation step
has large impact on the results. During operation SCARAB
will collect much more (and more realistic) training data on
a daily basis which will lead to a more robust performance.
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