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Mechanical Design Optimization of a Pneumatically Actuated Parallel
Kinematic Machine

Klemens Springer1, Hubert Gattringer2 and Andreas Müller2

Abstract—The application field of motion simulation needs
robotic platforms with a high level of dexterity payload.
Therefore increasingly parallel manipulators/platforms are used
as 3 to 6 degree-of-freedom constructions. The contradictory
aim for high applicable forces and large workspace volumes
necessitates an optimization of the mechanical construction.
In contrast to common configurations the robot utilized here
is a hexapod equipped with antagonistic type of pneumatic
actuation, imitating the flexor-extensor principle of human
muscles. A counter force is applied passively through a spring
in the center point of the hexapod. This structure offers
advantages for application as motion simulator such as little
maintenance requirements and low cost assembly. Due to
the direct correlation between actuator length and dynamics,
the use of classical techniques for workspace evaluation in
the area of design optimization is not applicable. The paper
illustrates the optimal design of this parallel kinematic ma-
chine concerning maximum workspace taking into account the
dynamical system. The presented method ensures stability in
the upper maximum possible position through an additional
optimization of the maximum disturbance force. The resulting
multi-objective optimization problem is solved by using an
evolutionary algorithm with a Pareto approach. The introduced
method for evaluating an adequate measure of the maximum
workspace volume for parallel platforms is well suited in the
application field of motion simulators. The optimal solutions of
the Pareto front are evaluated and compared to the parameters
used in the existing configuration of the platform at the Institute
of Robotics.

Keywords: multi-objective optimization, parallel robots, de-
sign optimization, motion simulator, pneumatic actuation

I. INTRODUCTION

Parallel kinematic machines have received growing atten-
tion in the fields of vibration damping, medical surgery and
industrial applications like toolheads in the last few years,
see [1], [2]. Originally invented for motion simulation (see
[3], [4]), which is the purpose here as well (Fig. 1), hexapods
have successfully asserted themselves in this area. Following
the most accurate definition Gough platform is used for the
parallel platform. The main advantages, good accuracy and
dexterity, of a Gough platform accompany the disadvantage
of small workspace, which is most important for the given
application. Thus a main aim within the mechanical design
of these platforms is the maximization of the workspace
volume without loosing the advantageous properties, see [5],
[6], [7]. In the last years a lot of research has been done in
the optimization of the dynamic behavior and compliance
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Fig. 1: Motion simulator mounted on the parallel platform

by Zhang in [8], stiffness by Krefft in [9], manipulabil-
ity by Wen in [10] and general workspace maximization
with respect to constructive constraints by Masory in [11].
Hardly any attention has been paid to mechanical design
optimization concerning antagonistic actuation systems with
a passive component. This article introduces new techniques
for the workspace optimization of a pneumatically actuated
6-degree of freedom Gough platform including dynamical
considerations. That necessity results from the direct cor-
relation between the kinematics (contraction) and dynamics
(pressure) of the actuator. Due to the lack of the possibility
to impress forces of arbitrary directions by the pneumatic
actuators, see Fig. 2, a spring is mounted in the center
of the construction to passively apply opposite forces and
torques. In order to maximize the possible disturbance force
at the topmost pose, an additional objective criteria is in-
troduced for avoiding the loss of manipulability. Countless
authors addressed single-objective optimizations of parallel
mechanisms. This approach leads to a dominant problem for
the present contradictory formulation. To find an appropriate
solution, it is formulated as a multi-objective optimization
problem. Genetic algorithms, that are predestined for non-
convex and non-smooth optimization formulations, use evo-
lutionary strategies from genetic programming to cope these
types of problems, see [12], [13]. In contrast to standard
gradient-based solvers, they have no need for gradient in-
formation, are nearly independent of discontinuities and are
more efficient in performing a global search. To allow for
multi-objective considerations, a Pareto approach in combi-
nation with genetic algorithms is used.
In accordance with the contents presented above, this paper
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Fig. 2: Possible directions of actuator and spring forces

is arranged as follows. After a description of the model-
ing of the mechatronic system including kinematical and
dynamical considerations (section 2), the formulation of the
optimization problem is shown in section 3. Introducing new
techniques, the calculation of the workspace and maximum
disturbance force is illustrated. Section 4 focuses on the
explanation and implementation of the problem formulation
through a genetic programming based solver with a Pareto
approach for multi-objective considerations. Furthermore the
results of the optimization are presented. At the end of the
paper in section 5 a conclusion for the used technique is
drawn.

II. MODELING OF THE MECHATRONIC SYSTEM

The considered mechatronic system is split into a kine-
matical and a dynamical section, containing the pneumatic
subsystem as well.

A. Kinematic description

The considered robot consists of two rigid platforms - the
fixed base and the movable, coaxially arranged, upper one.
They are connected by six flexible pneumatically driven
fluidic actuators and a spring in the center of the robot,
see again Fig. 2 . This concept is based on the principle
of the human muscle system, whereby here the opponent to
the muscles is a passive one. The inertial coordinate system
is chosen in the center of the base platform. In order to
calculate the maximum workspace, the inverse kinematics,
that describes the actuator lengths in dependence of the
Cartesian coordinates of the tool center point P , is needed.
For this, the solution of I li = IrP + RI4 4rbi − Irai has
to be found (see Fig. 3), where the endpoint vector IrP is
equivalent to the first three entries of the minimal coordinates
q =

[
x y z α β γ

]T .
There, the angles α, β, and γ represent the rotation of the

upper platform in Cardan description and x, y, z the position
relative to the inertial coordinate system. The rotation matrix
RI4 relates the body-fixed coordinate system 4K in the
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Fig. 3: Coordinate systems and kinematics for one arm

center of the upper platform to the inertial frame. The vectors
Irai and 4rbi to the actuator contact points are calculated as
functions of the optimization variables rA, rB (radii of the
mounting mounts of the actuators), αoff and βoff (offset
angles), shown in Fig. 4 and Fig. 3.
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Fig. 4: Angular offsets

Constraints: For respecting constructive constraints, the
maximum actuator lengths lmax = l0 (1 + 0.05), lmin =
l0 (1− 0.25), given by the manufacturer’s specifications, and
passive joint angles

θA,iMin ≤ θA,i = cos−1
(
Ie

T
3 Iui

)
≤ θA,iMax , i = 1 · · · 6

θB,iMin ≤ θB,i = cos−1
(
4e

T
3 Iui

)
≤ θB,iMax , i = 1 · · · 6

(1)

with the actuator direction vectors and the unit vectors in the
respective coordinate systems

Iui =
I li
‖I li‖

=
IrP +RI4 4rbi − Irai
‖IrP +RI4 4rbi − Irai‖

, i = 1 · · · 6

Ie
T
3 = [0, 0, 1] , 4e

T
3 = [0, 0, 1]

(2)

have to be formulated (Fig. 5). The pneumatic actuators
have a nominal length of l0 and are fixed with universal
joints, mounted in axial bearings, in the upper platform.
As a consequence of this additional degree of freedom, the
upper universal joints do not constrain the maximum angles
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Fig. 5: Kinematic constraints for joint angles

of inclination θB,i = 90◦. In contrast to this, only 60◦ are
allowed for the universal joints’ inclination angles θA,i at the
base platform. Actuator collisions can be neglected because
other constraints become active before they would occur.

B. Dynamical description

The equations of motion in minimal description are calcu-
lated with the projection equation, see [14] and results in

M(q)q̈ + g(q, q̇) +Kq = Qm = B(q)Fm

Fm = [F1, F2, .., F6]
T (3)

see [15] for details. M(q) is the mass matrix, and g(q, q̇)
contains the remaining nonlinear terms (gravity, centrifugal,
Coriolis). K represents the stiffness matrix due to the spring
forces. The generalized driving forces Qm can be separated
into the input matrixB(q) and the actuator forces Fm. These
actuator forces are projected into the minimal space by

Qm =

6∑

i=1

JT
m,i Iui Fi. (4)

The partial derivatives of the vectors to the actuator mount
base IrMi, see Fig. 5, yield the Jacobian

Jm,i =
∂IrMi

∂q
=

∂ (IrP +RI4 4rbi)

∂q
, i = 1 . . . 6. (5)

Eq. (4) can be combined to

Qm = B(q)Fm. (6)

1) Pneumatic subsystem: The 6 pneumatic subsystems
consist of a fluidic actuator by FESTO, called fluidic muscle,
an analog proportional valve, a pressure sensor and a linear
potentiometer to measure the actuator lengths ‖I li‖2. The
muscles are made of a fiber-reinforced rubber tube with
mounting flanges at the ends. The actuator operates as
follows: Air flows into the tube and leads to increasing
pressure pi, i = 1 . . . 6 and thus to a broadening of the
muscle. Because of specially arranged fibers this results in a
contraction h of the muscle

hi =
l0,i − ‖I li‖2

l0,i
100%, i = 1 . . . 6 (7)

in percent in longitudinal direction with the relaxed link
length l0,i of muscle i. This fact is used to generate pulling
forces

Fi =

(
pi

na∑

k=1

akh
k
i +

nb∑

k=1

bkh
k
i

)
, i = 1 . . . 6 (8)

that have nonlinear characteristics and depend on the pres-
sures pi and the contractions hi. The polynomial coefficients
ak, bk are derived from a mathematical approximation of
the actuator’s characteristics given by the manufacturer, see
Fig. 6.
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Fig. 6: Characteristics of the fluidic muscle DMSP40 by
FESTO

2) Identification of the spring parameters: In order to
describe the dynamical model from section II-B as exact as
possible, which is needed for the optimization formulation,
the spring parameters have to be known. Therefore an
identification of the stiffness matrix K is done based one the
Least Squares method, see [16] for details. This identification
was verified through calculating a feedforward control based
on the identified spring stiffness matrix and evaluating the
position error. The error is around 0.5mm in the middle of
the workspace and not much higher in the topmost and the
lowest pose.
Since the identification is only done relative to the one
set of muscles used for the measurement and the specified
repeatability is ≤ 1%, the inaccuracy of the actuators does
not influence the spring identification. More sophisticated
models of the spring using neuronal networks can be found
in [17].

III. OPTIMIZATION PROBLEM

As discussed extensively in numerous publications, the most
important optimization criterion in the process of mechanical
design of parallel kinematic machines is the maximization
of the workspace. Commonly the workspace is iteratively
evaluated with a method, based on the inverse kinematic
of the Gough platform, see e.g. [11]. Different from this
approach an application adequate measure is used here as
a substitution for the workspace volume. This simplification
balances out the increased calculation effort caused by the
necessary consideration of the actuator dynamics while re-
sulting in a quality of the solution that is sufficient for motion
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simulation. Furthermore the orientation is included in the
used application adequate measure.

A. Workspace

Due to the high complexity of the analytical calculation
of the workspace, a numerical approach similar to that
in [11], has been chosen. Based on the assumption,
that the volume of the cubage can be approached with
VAR = 1

3 (xmax − xmin)
∣∣
z=zmid

(ymax − ymin)
∣∣
z=zmid

(zmax − zmin) with the workspace center zmid =
(zmin + zmax)/2, the maximum translational displacements
xmin, xmax, ymin, ymax, zmin and zmax have to be
calculated. Therefore the actuator lengths of 6 reference
poses

qP1 = [0, 0, zmin, 0, 0, 0]

qP2 = [0, 0, zmax, 0, 0, 0]

qP3 = [xmin, 0, zmid, 0, 0, 0]

qP4 = [xmax, 0, zmid, 0, 0, 0]

qP5 = [0, ymin, zmid, 0, 0, 0]

qP6 = [0, ymax, zmid, 0, 0, 0]

(9)

are evaluated with respect to the length and joint angle con-
straints. Only constraints concerning the lower joint angles
have to be considered. The procedure is introduced briefly:
1) Starting at an infeasible point, e.g. qP = [0], the

actuator lengths and joint angles for an increasing z
coordinate are iteratively calculated. The first point
that does not violate the constraints represents the
minimum displacement zmin.

2) Starting at qP1 the z coordinate is increased again
and the actuator lengths and joint angles are iteratively
calculated. If the constraints are violated, the last feasi-
ble position reveals the maximum displacement zmax.
Hence the relative displacement ∆z = (zmax − zmin)
is calculated.

3) Next the actuator lengths and joint angles are cal-
culated for positions with increasing displacements
in the x and y coordinates one axis after the other,
starting at the workspace center (qP1 + qP2) /2. If
the constraints are violated, the last feasible position
reveals the maximum displacement xmax or ymax.

4) The same way xmin and ymin are computed with
decreasing displacements starting at the workspace
center, which from ∆x = (xmax − xmin) and ∆y =
(ymax − ymin) ensues.

On the basis of this algorithm, an objective function for
evaluating an application adequate measure as approximation
for the workspace volume of this hexapod, treated as a
rigid mechanism, can be suggested. The calculation of the
maximum positions starting at (qP1 + qP2) /2 is completely
admissible in the specific application field of a motion
simulator, whose default position is at q0 = (qP1 + qP2) /2.
The optimization variables to manipulate this measure are
the platform radii rA, rB and the offset angles αoff , βoff ,
see Fig. 4. Reconsidering the direct correlation between

impressed force and contraction of the pneumatic actuators, it
comes clear that not only kinematics have to be kept in mind,
but also the dynamic modeling and a dynamic mass calcu-
lation due to variable platform radius rB . Consequently, the
workspace calculation has to be extended and the maximum
positions are calculated with respect to dynamics. Regarding
this problem statically with q̇, q̈ = 0, the actuator forces

Fm (q, q̇ = 0, q̈ = 0) =

B(q)−1
(
M(q) q̈︸ ︷︷ ︸

0

+g(q,0) +Kq
)

Fm (q) = B(q)−1
(
Kq+ g(q,0)

)
(10)

are calculated via the inverse dynamics. Hence and in com-
bination with the muscle contractions at the current position
gained via inverse kinematics and Eqn. (7), the required
muscle pressures

pi =
Fi −

∑nb

k=1 bkh
k
i∑na

k=1 akh
k
i

, i = 1 . . . 6 (11)

are determined. If the pressure constraints 0 ≤ pi ≤ pmax =
6bar, given by manufacturer specifications, are violated, then
the displacement zmin,act = zmin,act + ∆zred, exemplary
shown for the minimum displacement in z-direction, is re-
duced consecutively by a minimal value ∆zred till a feasible
position is found.
In order to include the orientation in this measure, the maxi-
mum rotatory displacementsφφφ, analogously to the workspace
volume evaluation, are calculated in 6 reference poses

qP7 = [0, 0, zmid, αmin, 0, 0]

qP8 = [0, 0, zmid, αmax, 0, 0]

qP9 = [0, 0, zmid, 0, βmin, 0]

qP10 = [0, 0, zmid, 0, βmax, 0]

qP11 = [0, 0, zmid, 0, 0, γmin]

qP12 = [0, 0, zmid, 0, 0, γmax] .

(12)

Hence ∆α = (αmax − αmin), ∆β = (βmax − βmin) and
∆γ = (γmax − γmin) result. Now the workspace evaluation
function can be stated as

ΨAR =
1

2
W11∆x2 +

1

2
W22∆y2 +

1

2
W33∆z2+

1

2
W44∆α2 +

1

2
W55∆β2 +

1

2
W66∆γ2

=
1

2

[
∆rT ∆φφφT

]
W

[
∆r
∆φφφ

]
=

1

2
∆qTW∆q

W ≥ 0

(13)

with the positive definite diagonal weighting matrix W =
diag(0.5, 0.5, 5, 0.5, 0.5, 0.05) and the diagonal entries Wii.
The maximum displacements are represented with ∆rT =
[xmax − xmin, ymax − ymin, zmax − zmin] and ∆φφφT =
[αmax − αmin, βmax − βmin, γmax − γmin].
In the application of a motion simulator, gravity is used
for simulating sustaining accelerations through tilting the
pilot’s seat. Therefore defined minimum required rotations
[αlb, αub] = [−10◦, 10◦] and [βlb, βub] = [−10◦, 10◦] are
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postulated for the roll angle α and the pitch angle β, that
are considered through an unequality constraint

ΨAR,c =





ΨAR αmax > αub ∧ αmin < αlb ∧
βmax > βub ∧ βmin < βlb

0 else
(14)

implemented in a constrained workspace evaluation function.

B. Disturbance force

Numerous publications concerning research in stiffness,
compliance and dynamical optimization can be found, see
[8], [9], [10], as mentioned in the introductory section. These
considerations are featuring minor optimization potential for
the used Gough platform, because of only one variable dy-
namic parameter (upper platform mass) and the predominant
structural compliance due to the fluidic muscles and the
spring. Another challenging peculiarity of this construction
is the one-way force direction of the actuators. As a con-
sequence a force impression in positive z direction in the
upper reference pose qP2 is not possible if an adequate
pretension of the spring through the parameter lp, see Fig. 2,
is missing. Therefore the maximum possible disturbance
force in negative z direction Fdist,max has to be optimized
with lp as optimization variable. The force

Fdist,max = eT3

6∑

i=1

JT
m,i Iui∆Fi

eT3 = [0, 0, 1, 0, 0, 0]

(15)

results out of the maximum applicable muscle forces ∆Fi

with the Jacobian Jm,i for the transmission of the generalized
forces, see Eqn. (5), and the unit vectors Iui, see Eqn. (2)
and Fig. 5. The required actuator forces

∆Fi = Fi(pmin,i)− Fi(p0,i), i = 1 . . . 6 (16)

are gained out of the drive forces, see Eqn. (8), in the upper
reference pose qP2 with the unknown pressure

pmin,i = p (Fi (q = qP2 , Fdist = Fdist,max) , hi(qP2))
(17)

occurring at the impression of the unknown maximum dis-
turbance force and the pressure

p0,i = p (Fi (q = qP2 , Fdist = 0) , hi(qP2 ) (18)

occurring in the absence of the disturbance force, see
Eqn. (11). The needed forces in joint space Fm ∈ R6 are
a result of an adapted inverse dynamic, formulated out of
Eqn. (10) with an additional disturbance term Fdist

Fm (q, Fdist) = B(q)−1
(
Kq+ g(q,0)− Fdiste3

)
. (19)

In order to calculate pmin,i we need to know that in the top-
most position at least one actuator holds a relative pressure
of pmin = 0 bar when the maximum controllable disturbance
is impressed. Hence the maximum pressure reserve

∆p = min
i

{0− p0,i} (20)

due to the muscle pressure constraints, mentioned in section
III-A is determined. Furthermore, the muscle forces can be
expressed with pmin,i = p0,i + ∆p and the evaluation of
Eqn. (16) and Eqn. (8) to

∆Fi = ∆p

na∑

k=1

akh
k
d, i = 1 . . . 6. (21)

If force impressions of arbitrary directions are desired, then
the maximum pressure reserve is computed to

∆p = min
i

{
(0− p0,i)

∂pi

∂Fdist

}
∂pi

∂Fdist
, i = 1 . . . 6 (22)

with the pressure rate gained through a difference approxi-
mation

∂pi
∂Fdist

=
p∆Fdist,i − p0,i

∆Fdist
, i = 1 . . . 6

p∆Fdist,i = p (Fi (q = qP2 , Fdist = ∆Fdist) , hi(qP2 )) ,
(23)

and a small disturbance force ∆Fdist. With the evaluation
of Eqn. (15) the second objective function is defined as well.

C. Optimization Problem

The overall optimization problem can now specified as

max
x

J1 = ΨAR,c

max
x

J2 = Fdist,max

s.t. rB ≤ rA

x ≤ x ≤ x

(24)

with the optimization variables x = [rA, rB , αoff , βoff , lp]
that are bounded to lower bounds x and upper bounds x.

IV. OPTIMIZATION PROCEDURE

The formulation of Eqn. (24) describes a multi-objective
optimization problem. The objectives J1 and J2 behave
contradictory, whereby a multicriterial approach is needed for
finding an appropriate solution. Therefore a Pareto approach
is applied, because using one objective function as a result
of a direct weight assignment method for example does
not describe a physical representation. The solver used here
is the existent and versatile solver gamultiobj in Matlab.
The resulting Pareto front in Fig. 7, that represents the
number of non-dominated solutions, shows the dominance of
the maximized disturbance force, evaluated in the objective
function J2. Despite this fact, an applicable set of solutions
has been found through the Pareto approach. The Pareto
front also reveals solutions that allow very high disturbance
forces in the upper maximum pose. Based on a maximum
load of 150 kg, the parameters with the biggest workspace
volume measure ΨAR,c and sufficient Fdist,max are gained
out. Important for the construction in the application field of
motion simulation are mainly the parameters ∆z,∆α and
∆β, as it emerges from the weighting values in section
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Fig. 8: Comparison between the current and one optimized
configuration for the Gough platform

III-A, in order to simulate high-frequency up and down
movements and sustaining accelerations through utilizing the
gravitational vector. In comparison to the current configu-
ration of the Gough platform at the Institute of Robotics,
a huge improvement in the important degrees of freedom
is achieved. This comparison of the resulting constructions
is illustrated in Fig. 8, that shows the expected behavior.
The narrower the construction is, the higher is the maximum
applicable disturbance force and the more expanded the
platform is, the bigger the workspace measure will get.

V. CONCLUSION

Optimizing the kinematic design parameters of the construc-
tion is a traidoff between maximizing the admissible distur-
bance forces at the upper extremal position and maximizing
the workspace. In the decision making process for the choice
of a solution from the Pareto front, a compromise was made.
Furthermore the combination of kinematics and actuator
dynamics involves challenging difficulties. It was shown that,
despite the pneumatic actuator dynamics, a workspace opti-
mization with a maximization of the admissible disturbance
force was possible using the methods of genetic algorithms
in combination with a Pareto approach concerning multi-
objective optimization formulations.
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