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Analysis and tuning of PID controller gains for DC servo drives using
Garpinger’s trade-off plots*

Simon Hoher1 and Jakob Rehrl2

Abstract—Although PID tuning for DC drives is widely
studied, a structured, practical guide addressing robustness and
setpoint tracking/disturbance rejection trade-offs is still lacking.
This paper condenses established methods into a clear, step-by-
step approach for optimal PID tuning using Garpinger’s trade-
off plots, aiming at practical use in industrial applications.

Index Terms—PID control, Garpinger’s trade-off plots,
AMIGO and Garpinger method, servo drives

I. INTRODUCTION

Precise PID tuning is essential for electric drive con-
trol in industrial settings, requiring fast disturbance rejec-
tion, setpoint tracking, and robustness. This paper presents
the Approximate M-constrained Integral Gain Optimization
(AMIGO) [7] and the Garpinger method [4] as structured
tuning approaches addressing these needs. AMIGO ensures
fast, robust control without overshoot; Garpinger adds flex-
ibility by allowing gain adjustment without compromising
performance. Though focused on DC motors due to their
modeling simplicity, results apply to synchronous motors via
PQ-transformation [6], which are standard in industry. Using
Garpinger trade-off plots, we show that optimal gains can
be selected directly, offering an efficient and practical tuning
method suitable for broader adoption.

II. RELATED WORK

A. PID Control: Basics and Challenges

PID control is widely used due to its simplicity and
robustness [3]. The controller output is defined as

u(t) = KP · e(t)+KI ·
∫ t

0
e(τ)dτ +KD · de(t)

dt
,

where u(t) is the controller’s output, e(t) the control error,
KP the proportional gain, KI the integral gain and KD the
derivative gain.
Tuning the gains KP, KI, KD is nontrivial, as it must ensure:
• Stability of the closed loop system,
• Fast response to setpoint changes and disturbances,
• Minimal overshoot,
• Robustness to model uncertainties.
In practice, cascaded control structures are often used to

enhance performance (see Figure 1).
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B. Cascaded Control

Cascaded control is widely used in motor control, espe-
cially for DC and synchronous motors [2]. It consists of
nested loops (see Figure 1):
1. Inner Control Loop: The inner control loop regulates

the motor’s speed and quickly responds to load changes.
2. Outer Control Loop: The outer control loop handles

position control. The primary goal of the outer loop is to
maintain accurate position control and ensure closed-loop
stability.
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− −
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Fig. 1. Cascaded control with upstream profile generator

Typically, a trapezoidal velocity profile is used to provide
the motor movement in three phases [3] (see Figure 2):
1. Acceleration Phase: The motor accelerates with a

constant maximum acceleration amax to the maximum speed
vmax.
2. Constant Speed Phase: After reaching the maximum

speed, the motor continues to move at constant speed vmax.
3. Deceleration Phase: The motor decelerates with the

same maximum acceleration −amax to precisely reach the
final position.
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Fig. 2. Calculated trajectory with a trapezoidal velocity profile for given
waypoints 4 and 12 revolutions (vmax = 40 rad/s, amax = 80 rad/s2)

C. Garpinger’s trade off diagrams

The design of PID controllers often involves balancing
competing objectives, such as minimizing control error and
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ensuring robustness against disturbances and model uncer-
tainties. The Garpinger trade-off plots provide a powerful
visualization of these trade-offs by representing performance
and robustness criteria explicitly [4]. These plots help to
identify optimal PID parameters by highlighting the com-
promise between error minimization and robustness.
Three key criteria are typically used in these analyses:

Performance Criteria: IE and IAE

The IE criterion measures the integral of the control
error e, i.e., IE =

∫ ∞
0 e(t)dt. This metric captures the overall

magnitude of the error but does not emphasize short-term or
large deviations.
The IAE criterion improves upon the IE by emphasizing

absolute deviations, which are often more relevant in practi-
cal systems,

IAE =
∫ ∞

0
|e(t)|dt. (1)

The IAE is widely used as a performance metric because
it penalizes persistent deviations more effectively than the
IE. A lower IAE indicates better performance in terms of
setpoint tracking and disturbance rejection. If |IE| and IAE
yield identical values, no overshoot occurs in the system.
The computation of the I(A)E values is typically done for

two experiments: i) a step response from di to y (disturbance
rejection), and ii) a step response from ur to y (setpoint
tracking) in Figure 1.

Robustness Criterion: Maximum Sensitivity Mst

The robustness of a control system is commonly evaluated
using the maximum sensitivity criterion, defined as:

Mst =max
ω

(|S(jω)| , |T (jω)|) (2)

S(jω) is the sensitivity function, representing the system’s
response to disturbances and model uncertainties at different
frequencies. T (jω) is the complementary sensitivity func-
tion and represents the closed-loop frequency response for
setpoint tracking, describing how the output y responds to
changes in the setpoint r. A lower Mst corresponds to a more
robust system that tolerates model variations better. A higher
Mst suggests the system is less robust, as uncertainties are
amplified more significantly.

The Trade-Offs in Garpinger Plots

The Garpinger trade-off plots visualize the interplay be-
tween performance (IAE) and robustness (Mst) (see Figure
3).
Unstable KP-KI parameterizations are colored grey (by the
term unstable, a closed-loop system that is not internally
stable [9] is ment). The Mst is plotted as red line, and the
IAE as blue line. The IE value can be calculated by reading
the controller gain on the ordinate axis: IE =−1/KI. Where
the |IE| value coincides with the horizontal line of the IAE
value, |IE| and IAE have the same value. The IAE value does
not change along the blue lines. Each point corresponds to
a specific set of PI controller gains.
The optimal line (green in Figure 3), or Pareto front, is

the set of points where no further improvement in one
criterion can be achieved without degrading the other and
is plotted as green line. Designers can choose parameters
along this (green) line depending on the specific application
requirements.

Fig. 3. Grapinger’s trade off plot

Control gains to the left of the Pareto front lead to an
overshoot (since |IE| ̸= IAE), to the right of the Pareto
front to a less robust system (since IAE is constant but Mst
increases) and longer settling time (since IAE is constant but
proportional controller KP gain is increasing). By using these
plots, it is possible to systematically select PID parameters
that balance performance and robustness in a way that aligns
with the specific needs of the control system. This approach
not only improves system reliability but also provides a clear
methodology for achieving optimal tuning.
The plots show how reducing the |IE| or IAE (better perfor-
mance) often comes at the expense of increased Mst (reduced
robustness). Lowering the IAE typically requires higher PID
gains, which may improve disturbance rejection or setpoint
tracking but also makes the system more sensitive to noise
and model uncertainties. Reducing Mst enhances robustness
but may result in slower responses and larger errors. In
the Garpinger’s trade-off plots, an optimal line emerges,
representing the best compromise between performance and
robustness (see green line in Figure 3). Remark: This opti-
mal line yields different sets of controller parameters when
considering either disturbance rejection or setpoint tracking
trade-off plots. In the remainder of the paper, the type of plot
that is used is always mentioned. In some of the Garpinger
plots, two lines describing the optimal controller parameters
are shown. The green one is related to the disturbance
rejection, whereas the magenta one is related to setpoint
tracking.

D. AMIGO and Garpinger Method for PID Controller Tun-
ing

The AMIGO method is a modern approach for tuning PID
controllers, designed to overcome the limitations of tradi-
tional tuning methods such as Ziegler-Nichols method [7].
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The method incorporates advanced design criteria to opti-
mize disturbance rejection and minimize overshoot, while
ensuring high robustness against model uncertainties and
process variations.
The AMIGO method calculates the PID controller gains

(KP, KI, KD) based on the step response of the system.
1. Process Gain (K): The steady-state gain of the system,

calculated as: K = ∆y/∆u where ∆y is the change in the
output and ∆u is the change in the input of the plant.
2. Time Delay (L): The time it takes for the output to

begin responding significantly after the input step.
3. Time Constant (T ): The time required for the system

to reach approximately 63 % of its steady-state response,
minus the time delay.
Based on the above parameters, the AMIGO method

calculates the PI gains as follows:

KP =
0.15
K

+(0.35− L ·T
(L+T )2

) · T
K ·L , (3)

TI = 0.35L+
13L ·T 2

T 2+12L ·T +7L2
, (4)

KI =
KP

TI
. (5)

If the D term is also to be considered, then there are
also analogous formulas that interpret the controller gains
somewhat more conservatively [1].
In certain cases, process constraints require adjustments

to the controller gain. The Garpinger method addresses this
by calculating the optimal integral gain (KI) as a function of
the proportional gain (KP) based on parameter fitting derived
from Garpinger’s trade-off plots [4]

KI =
KP+0.1K ·K2

P
0.3L+0.7T

, (6)

and is valid for Mst < 1.6.

III. RESEARCH QUESTION AND APPROACH

This research explores and compares the performance and
robustness of two modern tuning methods for PID controllers
in motor control: the AMIGO method and the Garpinger
method. Both methods are evaluated in cascaded control
systems for speed and position control, using Garpinger’s
Trade-Off Plots to balance performance metrics (e.g., fast
disturbance rejection, precise position tracking) with robust-
ness criteria (e.g., maximum sensitivity).
The evaluation was conducted on an Arduino-based DC

motor system, replicating realistic operating conditions and
noise to test controller robustness. The controller parameters
were validated by observation of the response times of the
speed and position.

IV. CASE STUDY

This section presents the design of a velocity control
loop based on feedback control (IV-A to IV-C) and the
implementation of a position control loop (IV-D).

A. System Identification and Model Extraction

To capture the behavior of the real system, an open-loop
step response was performed using a DC motor from the
Makeblock mBot Ranger kit. The motor is driven by a
PWM signal ranging from -255 to +255 (12 V max). The
measured outputs are angular velocity y (in rpm) and angular
position yr (in radians), obtained via the onboard encoder.
The controller operates at a cycle time of 5ms.
The step response (Figure 4) reveals significant noise in

the speed signal, whereas the position response is relatively
smooth.
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Fig. 4. Step response of DC motor

To address this, a first-order low-pass filter with a time
constant T = 0.05s was applied, chosen to be about four
times faster than the system’s natural cutoff. This reduces
noise while preserving essential dynamics (see Figure 5).
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Fig. 5. Step response of DC motor with a filtered angular velocity with
filter time constant T = 0.05s

The filtered system is modeled as

P(s) =
Ŷ (s)
U(s)

=
K

T · s+1
·e−L·s =

2.222
0.198 · s+1

·e−0.087·s. (7)

This first-order lag plus time delay (FOLPD) model suffi-
ciently captures the motor dynamics (see Figure 6) and serves
as the basis for controller design.
The maximum velocity vmax and acceleration amax, needed

for trajectory generation, are estimated directly from steady-
state K and maximum input u as

vmax ≈ K ·umax ·
2π
60

= 2.222 ·255 · 2π
60

≈ 50rad/s, (8)

amax ≈ 2 ·umax ·
K
T
· 2π
60

≈ 600rad/s2. (9)
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Fig. 6. Comparison of the real measurement data with the identified FTOD
model

B. Garpinger’s Trade-Off Plots for Performance and Robust-
ness

To evaluate the controller design, trade-off plots based on
the Garpinger method were created in MATLAB for both
disturbance rejection (Figure 7) and and setpoint tracking
(Figure 8). These plots visualize the trade-off between per-
formance (measured by IAE) and robustness (measured by
maximum sensitivity Mst).

Fig. 7. Garpinger’s trade-off plot for disturbance rejection

1. Pareto Front Analysis:
The green and magenta lines represent Pareto fronts for dis-
turbance rejection and setpoint tracking, respectively. Each
point on the front offers the best achievable performance
for a given robustness level. For Mst < 1.2, the fronts
diverge, revealing that both objectives cannot be optimized
simultaneously.
2. Choice of Robustness Level:

A moderate robustness level of Mst = 1.4 is selected, as this
value provides a reasonable balance between sensitivity to
disturbances and robustness against uncertainties. For this
Mst value, the controller gains can then be read off the Pareto
Front for disturbance rejection (green line) at KP ≈ 0.34 and
KI ≈ 2.07 (see Figure 7) and KP ≈ 0.38 and KI ≈ 1.95 for
setpoint tracking (see Figure 8).
3. Impact of Optimization Choice:

Tuning for disturbance rejection leads to better rejection
performance but results in overshoot during setpoint changes.

Fig. 8. Garpinger’s trade-off plot for setpoint tracking

Conversely, tuning for setpoint tracking sacrifices disturbance
suppression. This reflects the inherent conflict between these
objectives in PID control.
4. Significance of the Integral Term (KI):

The results consistently demonstrate the importance of in-
cluding an integral term (KI > 0) in the controller design.
While the literature often suggests that a P-P cascaded
control may be sufficient for many applications [8], the
trade-off plots show that an integral term significantly en-
hances both disturbance rejection and setpoint tracking. By
implementing an I-term, the controller achieves superior
overall performance compared to purely proportional control
strategies. In addition, the disturbance error would not be
eliminated with a pure P control, as the plant does not have
a pure I component.
By analyzing these plots, designers can select the most

suitable controller gains for their specific application, bal-
ancing the trade-offs between disturbance rejection, setpoint
tracking, and robustness. Furthermore, the findings clearly
underscore the practical benefits of including an integral term
in the control design.

C. AMIGO and Garpinger’s tuning rules

The controller gains were initially analyzed using the
Garpinger’s trade-off plot for disturbance rejection. We now
calculate the gains using the AMIGO rule-of-thumb method
(see equations (3), (4) and (5)) and the parameters L, T and
K from our model (see equation (7)), which yielded specific
values for KP ≈ 0.21, TI ≈ 0.18, and KI ≈ 1.17.
These values were then compared to the trade-off plot

for disturbance rejection (see Figure 9). The results showed
that the gains obtained from the AMIGO method lie closely
on the Pareto front for a robustness level of Mst < 1.4.
This demonstrates that the AMIGO method provides optimal
controller gains for a fixed robustness criterion of Mst < 1.4,
ensuring a balance between disturbance rejection and robust-
ness.
However, the AMIGO method has a notable limitation:

it does not allow for independent adjustment of the pro-
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Fig. 9. AMIGO and Garpinger’s rule-of-thumb highlited in Garpinger’s
trade-off plot for disturbance rejection

portional gain KP. To address this issue, the Garpinger
method was applied. Different values below an Mst value
of 1.6 were chosen manually for the proportional gain and
the corresponding integral gain KI is calculated using the
Garpinger formula (6):

KP 0.1 0.2 0.3 0.4 0.5
KI 0.62 1.27 1.94 2.64 3.37

The new KP-KI pairs lie once again near the Pareto front
of the Garpinger trade-off plot for disturbance rejection (see
Figure 9). This result confirms that the Garpinger method not
only accommodates adjustments to KP but also ensures that
the recalculated KI maintains an optimal balance between
performance and robustness for disturbance rejection. How-
ever, these pairs are located significantly to the left of the
Pareto front for setpoint tracking (magenta line in Figure
9), particularly for higher KP values. This indicates that
controllers optimized for disturbance rejection are expected
to exhibit considerable overshoot in response to setpoint
changes. The results further emphasize the fundamental
trade-off between disturbance rejection and setpoint tracking:
the system can be optimized for one objective or the other,
but not for both simultaneously. Consequently, the choice
of controller parameters must carefully consider the specific
performance priorities of the application, as optimizing for
one criterion will inevitably compromise the other.
To validate the calculated controller parameters, the

AMIGO and Garpinger methods (with KP = 0.4 and KI ≈
2.64) were tested on the real motor system. The controllers
were implemented on the Arduino-based setup, and their per-
formance was evaluated under practical conditions, focusing
on setpoint tracking scenarios (see Figure 10).
The results revealed that the motor followed the de-

sired velocity setpoint accurately, with a significant veloc-
ity overshoot for the Garpinger method. This behavior is
consistent with the predictions from the trade-off plot for
setpoint tracking, which shows that controller parameters
optimized for disturbance rejection (with a robustness level
of Mst ≤ 1.4) tend to exhibit reduced performance in setpoint
tracking. Specifically, the controller gains derived from the
AMIGO and Garpinger methods prioritize disturbance re-
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Fig. 10. Step response of motor with AMIGO and Garpinger’s rule-of-
thumb

jection, which can lead to overshoot during rapid setpoint
changes.

D. Cascaded control

Experimental results highlight how the cascaded control
structure performs in response to a trapezoidal velocity
profile (see Figure 11). A significant deviation was observed
between the reference and actual response of the system and
the target values could not be accurately reached. Instead,
load disturbances are optimally compensated for.
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Fig. 11. Trapezoidal velocity profile response

In the final stage, a PID controller is implemented in
the outer position loop. Unlike the inner loop, whose gains
were determined via tuning rules, the outer loop gains
are directly derived from the Garpinger trade-off plots to
optimize tracking robustness.
The plant for the outer loop is defined as:

Pout =
Yr
Ur

=
PC

1+PC
·Pr, (10)

where Pr = 1/s represents the integrator that translates the
velocity to a position signal.
A Garpinger trade-off plot is generated for setpoint track-

ing. Since the system has an integrating behavior, the plot
visualizes the trade-off between the proportional gain (KP)
and the derivative gain (KD), rather than the integral gain
(KI) used in the previous trade-off analyses. The disturbance
still acts at the input of P and the noise filter was included in
the calculation (compare equation (7)). The resulting Pareto
front distinctly demonstrates the benefit of incorporating a
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Fig. 12. Garpinger trade-off plot for setpoint tracking of the outer loop

derivative action to improve system performance (see Figure
12).
We again select an Mst value of 1.4 and now determine

the controller gains from the trade-off plot with KP ≈ 0.62
and KD ≈ 0.2.

The complete control system is now validated using
trapezoidal velocity trajectory tracking (see Figure 13). The
system successfully follows the trapezoidal velocity profile,
demonstrating that the controllers are properly tuned.
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Fig. 13. Trapezoidal velocity profile response of the complete controlled
system

The results confirm the importance of tuning the inner
and outer loops differently to achieve optimal system perfor-
mance:

• The inner loop should be primarily tuned for distur-
bance rejection, ensuring that speed fluctuations and
external disturbances are suppressed effectively. The
controller should have an I component for two reasons.
Firstly, the trade-off plot shows that only then the
smallest possible IAE value at a certain robustness
requirement is met. Secondly, the I component in the
inner loop is required to obtain zero steady-state control
error.

• The outer loop should prioritize robustness and, if
necessary, setpoint tracking, allowing the overall system
to achieve smooth, accurate position control. However,
since the setpoint tracking can also be achieved by

feedforward control [5], particular attention should be
paid to robustness.

By synthesizing controller gains directly from the
Garpinger Trade-Off Plots, the system achieves a well-
balanced trade-off between disturbance rejection, robustness,
and setpoint tracking. The combination of optimized PID
tuning, and low-pass filtering for noise reduction ensures that
the cascaded control system performs with high precision in
real-world applications.

V. CONCLUSION

The tuning of PID controllers for DC drives is well estab-
lished, yet a structured step-by-step approach that systemati-
cally considers robustness, setpoint tracking, and disturbance
rejection is still lacking. This paper addresses this gap by
consolidating existing methods, particularly the AMIGO and
Garpinger approaches, and systematically applying them to
DC motor control. Garpinger’s trade-off plots are utilized
to facilitate the targeted selection of optimal controller pa-
rameters. The performance and robustness of the controllers
are experimentally validated on an Arduino-based motor
system, demonstrating enhanced setpoint tracking. Unlike
the inner loop, which is tuned using rule-of-thumb methods,
the outer loop of the cascaded control system is directly
synthesized using the trade-off plots, ensuring an optimal
balance between robustness and tracking performance. The
results highlight the practical relevance of this methodology
for industrial applications requiring high precision and reli-
ability.
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