Proceedings of the Austrian Robotics Workshop 2025

An Adaptable Multi-Robot Support System for Disaster Response*

Laurent Frering! and Gerald Steinbauer-Wagner!

Abstract—1In the recent years, many use-cases have been
found for robots in disaster response operations, and many
functionalities have been developed for those robots. But in
order to facilitate the use of those robots in real operations,
their usage have to be integrated at the mission level. In this
work, we present our architecture for a multi-robot support
system for disaster response operations. The proposed system’s
goal is to integrate agent-oriented programming for high-level
decision-making with arbitrary robot platforms, refining goals
into executable robot skills that are monitored and reasoned
on. We focus on the software architecture and implementation
details and provide details on the system capabilities and on
the technologies used, and we outline the process for extending
and adapting the proposed architecture to new projects. We
discuss the different use-cases where the proposed system was
deployed, and distribute its current open-source implementa-
tion: https://gitlab.tugraz.at/D214D39B6CEB7ECC/mrss

Index Terms— Software Architecture, Multi-Robot System,
Disaster Response

[. INTRODUCTION

The use of heterogeneous robot teams for disaster response
is gaining traction, with multiple recent experiments and
deployments in different settings and with different robot
types [1], including the use of Unmanned Aerial Vehicles
(UAVs) and Unmanned Ground Vehicles (UGVs) in disaster
response scenarios.

We previously proposed a generic architecture for a multi-
robot support system aimed at providing first responders
with a centralized situational picture obtained by a human-
robot team comprising interactive goal-driven autonomous
robots [2]. We deployed and tested this system during
a field experiment simulating a firefighting operation in
mountainous terrain, and gathered results and feedback from
participating firefighters. In the chosen use case, a UAV
equipped with color and thermal cameras was deployed
in selected areas, highlighting detected hotspots. This was
followed by sending a UGV equipped with a water tank to
those hotspots, providing a water supply to firefighters in the
field.

This field experiment was successful in tackling the use-
case and rated positively by the firefighters, but also showed
some limits in its autonomy and reliability. Those encour-
aging results lead us to continue upgrading the system and
deploy it in two additional field tests, refining the software

*This work was partially supported by the Austrian Research Promotion
Agency (FFG) with the project KI-SecAssist.

'Laurent Frering and Gerald Steinbauer-Wagner are with the In-
stitute of Software Engineering and Artificial Intelligence, Graz
University of Technology, Graz, Austria. laurent.frering,
gerald.steinbauer-wagner@tugraz.at

https://doi.org/10.34749/3061-0710.2025.6

architecture for easier use and adaptability to new use-
cases. The system matured into a software stack displaying
different functionalities stemming from the requirements
elaborated with end-users. Mainly, it integrates robust and
proven technologies (such as MQTT for inter-process com-
munication), provides a streamlined process to be adapted
to new projects with different robots and communication
protocols, and makes use of a Belief-Desire-Intention (BDI)-
based reasoning scheme for goal-driven reasoning [3].

Building on this process, we propose here an updated ver-
sion of this system architecture named MRSS (Multi-Robot
Support System). The focus is on the software engineering,
detailing the different modules and communication technolo-
gies. We show that MRSS is modular, and can be integrated
with arbitrary robots and communication protocols. We also
highlight its ability to integrate high-level goal-driven reason-
ing with actionable robot skills. We go over each component,
detailing the design choices and implementation details. We
also provide an open-source implementation of this system
to help with future field robotics deployments.

Our goal is to propose a flexible architecture leveraging
agent-based reasoning and multi-agent monitoring, able to
be easily adapted to varied projects. This leads us to leave
some implementation to the project developer, in particular
regarding the communication with external components. To
facilitate such adaptations, a streamlined process for extend-
ing the system to new projects is presented, focusing on
isolating the necessary changes to specific parts and outlining
the required tasks and their rationale. We thus aim at striking
a balance between robustness and flexibility.

Finally, we detail different deployments of the proposed
architecture and how it allowed end-users to manage complex
robot systems in the field.

To summarize the contributions, we propose a software
architecture for a multi-robot support system designed in the
context of disaster response, facilitating the integration of
autonomous robots with external components. We detail the
different modules and provide an open-source implementa-
tion, and detail how they can be adapted to different use-
cases by showcasing past deployments. As an additional
byproduct, the reasoner component showcases how to in-
tegrate the Jason BDI platform [3] with MQTT to easily
integrate with external components to generate percepts and
realize blocking actions.

II. RELATED WORK

Over the last few years, many efforts have been made to
deploy robot teams in disaster response scenarios. In addition

Creative Commons Attribution

37 4.0 International License

Proceedings of the Austrian Robotics Workshop 2025

to the ones mentioned earlier, we refer the reader to our
previous paper for an overview of those [2].

We focus here on projects and related work developing
multi-robot system applicable to disaster response scenarios
and providing different levels of reasoning.

The SHERPA project [4] had very similar interests, explor-
ing different interaction modalities and control levels with
heterogeneous robot teams. The main difference is their focus
on teams composed of one human and multiple robots, with
direct physical interaction and co-presence. While here the
humans and robots may act close to each other, the focus is
on the mission level, with centralized decision-making and
the ability to directly interact with the robots if necessary.

The NIFTi project [5] focused on designing a user-
centric system for multi-human multi-robot cooperation, with
realistic field deployments. They iterated over the design
over the course of the project, converging towards a robust
architecture that proved successful in deployments. However,
their system differs to ours by focusing on small robot teams
and user-centric semi-autonomous robot skills, whereas we
propose a more scalable system with less interaction. In
addition to this difference in scope, there is a difference
in specificity, as their system is a fully mature solution
with tightly integrated components. Our system is less rigid
(though less robustly designed for a given task), providing a
platform for future developments and focusing on adaptabil-
ity to different projects.

More recently, Copilot MIKE [6] is an assistant system for
multi-robot operations, deployed in the DARPA Subterranean
Challenge. It provides well-defined levels of autonomy for
task automation, and makes use of a modular scheduler
component. While similar to us, we differentiate between
higher and lower level goal management, and provide mod-
ular interfaces to facilitate reusability.

More generally, the authors of [7] realize a survey of
recent multi-agent human-robot interaction systems. They
classify those systems in terms of team size, team composi-
tion, interaction model, communication modalities, and robot
control. They highlight current challenges that are in line
with our objectives, such as understanding better the factors
influencing workload and situation awareness in multi-human
multi-robot teams, the impact of having heterogeneous robots
with varying levels of autonomy on human factors, and the
importance of scalability and transparency.

III. PROPOSED ARCHITECTURE

MRSS contains four main components interacting with
each other, including the robots or agents. The next para-
graphs will describe the components’ functions and inter-
communication, with the full diagram available in Figure 1.

The World Model centralizes and processes the data from
different sources, namely the User Interface for newly cre-
ated objects, the Task Management System for robot status
data, and the robots themselves for high-bandwidth data such
as image streams and direct control commands. In general,
the data is processed and stored for future use by the different
components, with the World Model acting as a single source

https://doi.org/10.34749/3061-0710.2025.6

[TASK MANAGEMENT SYSTEM (TMS)

Reasoner
Robot [€Actions—| Events
Communication Reasoner
Feedbacks Layer
|

- New Robot Data Function
- Grounding Call Call
- Function Call - Grounding Answer Function
Anslwev

- Funlmmn Answer
Symbol and Data Module

External Events

Robots/Agents Manager

|_Action
Status

1
- Ul Function Call
I T -ul Call

Function
Call

T
- New Robot Data
- Grounding Call

Function
Answer - Ul Function Answer
L | Grounding Answer

User Events

c

External
Functions

User Interface
(un

Grounding Answer

- Data Products|
- Ul Inputs

High Bandwidth
Robot Data
(e.g. Image Stream)

————>»{ World Model

Data Er

- High Bandwidth
Robot Data
(e.g. Image Stream)
- Specific data for Ul
- Ul continuous commands
(e.g. teleoperation)

Fig. 1. Overview of the full system architecture. We focus on the Task
Management System highlighted in green, and on how those components
can be adapted to interact with different external modules.

of truth for the system. It is also equipped with rules dealing
with current and new data, used to generate events for the
Task Management System.

Those events are converted by the Reasoner submodule
into actions for the robots to perform, with possible function
calls to external modules during the processing. The actions
refer to low-level goals, which are then assigned to one or
more robots, and refined into actual robot tasks that the
individual robots are equipped to perform. For example,
the initial event could be triggered by a UAV detecting a
hotspot; the Reasoner would refine this into an action for
providing water close to the area, after checking that there
is currently none in the vicinity. This action is then assigned
to an available UGV, which receives the task of going to the
corresponding area. In this way, the initial event is refined
into more concrete operations at every level. In order to
ground symbols into actual data, the World Model can be
queried at any point in time. The Task Management System
also monitors task execution and robot state, providing this
information to the reasoner and World Model.

As shown in the figure, the User Interface is used to
display data from the World Model and generate commands.
In general, this information would go through the World
Model before being forwarded to the Task Management
System. This can also be bypassed in applications where the
User Interface may be used to query non-critical information
at runtime that is not planned to be used otherwise, for
example to snap a picture of the current robot camera view.
The same is true for the robot data. Information that is only
to be used by the User Interface can be forwarded directly to
it. In particular, those mechanisms are important for direct
teleoperation, as it would often be the case that introducing

Creative Commons Attribution

38 4.0 International License

Proceedings of the Austrian Robotics Workshop 2025

the World Model in the middle of each operation would
introduce undesirable latency. In order to safely switch to
teleoperation, an event is initially generated so that the Task
Management System can suspend all the actions currently
assigned to the given robot. When it is notified about the end
of the teleoperation, the robot is again considered available
and the relevant actions are resumed.

Finally, the robots (or agents, as this architecture could
easily accommodate non-embodied agents) are equipped
with the ability to autonomously realize the tasks defined
for this application, and provide feedback on their progress.
They should also be able to update on their current state and
communicate with the World Model or the User Interface
directly for high bandwidth or low latency data.

In the proposed version, MRSS is able to consistently
monitor a fleet of robots and react to changes in state or
external events. The communication between the modules is
thought to avoid conflictual commands, by centralizing the
data in the World Model and minimizing the communication
points between the different modules. It also allows for
direct control of arbitrary robots, in an integrated way with
autonomous decision-making.

IV. IMPLEMENTATION DETAILS

We focus for the rest of the paper on detailing the
Task Management System, responsible for the processing of
external events and the allocation and monitoring of robot
tasks. We will detail how it is implemented, and how it
can easily be adapted to different robots, user interfaces, and
world models by using modular adapters.

A. Architecture Setup and Communication

Every component of the Task Management System is run-
ning in a docker container, and they communicate with each
other using MQTT (via an MQTT broker also running in a
docker container). This allows for portability and isolation,
and MQTT provides a proven and configurable framework
that is reliable and easy to inspect and log. Apart from the
Reasoner, the components are implemented in Python (ver-
sion 3.1+). This choice was made to facilitate implementing
project-specific modules, as Python3 provides many libraries
implementing commonly-used communication protocols.

We will now detail the format of the messages exchanged
internally between components. The External Events Man-
ager receives the external events, which are defined as
arbitrary messages with a mapping to first-order predicates
using a project-specific adapter. Those first-order predicates
represent the Reasoner Events, and are encoded as strings
and sent over MQTT to the Reasoner. The Reasoner in-
terprets those predicates as BDI percepts, which are re-
fined into goals fed into the agent program. The outputs
of the agent program are actions, which represent lower-
level goals (either achievement or performative [8]) that
the robot team can realize in the environment. They are
also defined as first-order predicates and augmented with a
Universally Unique Identifier (UUID) and a state variable
representing the completion status. The actions are then sent

https://doi.org/10.34749/3061-0710.2025.6

to the Robot Communication Layer, which refines them into
tasks, monitors their execution, and updates their status.
The tasks are project-specific parameterized robot-specific
skills to be executed, represented by the state machine
defined in section IV-E. Finally, the Robot Communication
Layer communicates with the Symbol and Data Module to
forward it newly received robot data and send it requests to
ground abstract objects IDs into python objects. Similarly,
the Reasoner is also able to communicate with the Symbol
and Data Module as an interface to call external functions.
The Symbol and Data Module communicates with external
functions and components using project-specific adapters.

The Docker Compose utility is used to easily start the
whole stack. This way, every component is started at once
and automatically configured for a given project.

B. External Events Manager

As discussed above, the External Events Manager is a
Python-based component providing project-specific adapters
for converting events with arbitrary representations and com-
munication protocols to first-order predicates encoded as
strings and sent over MQTT. It takes the shape of a python
package, whose main functions are first to load an MQTT
publisher to communicate with the other components, and
second to load the project-specific adapter responsible for
forwarding external events by using the MQTT publisher.
This is done by making use of Python’s dynamic import
capabilities, to import the right module at runtime given the
project name received from the Docker Compose configu-
ration. The project-specific module implements an External-
Adapter class that has access to the MQTT publisher, but
otherwise has the responsibility to implement the custom
logic to interpret the project events.

C. Symbol and Data Module

The Symbol and Data Module is similar to the External
Events Manager, as it is mostly responsible with providing an
adapter from external components to the Task Management
System. It is also implemented as a Python package dynam-
ically loading a project-specific module enabling bilateral
communication to the internal (via MQTT) and external (via
arbitrary communication protocols) components.

It manages requests over MQTT from the Reasoner and
Robot Communication Layer, and also processes robot data
received from the latter. On the other hand, it has to manage
answers from the World Model and external functions over
project-specific protocols.

The DataLayer class it implements thus provides MQTT
callbacks triggered when receiving requests for external
function calls, for grounding data via the World Model, and
when receiving robot telemetry to be forwarded to the World
Model. The exact list of callback functions and internal logic
is flexible, as long as the module keeps track of the requests
identifiers to send back the correct answer.

To enable effective symbol grounding, it is assumed that
objects in the World Model expose relevant identifiers or key
attributes to be used by external queries. Those can then be
used in reasoning and for retrieving the linked data.

Creative Commons Attribution

39 4.0 International License

Proceedings of the Austrian Robotics Workshop 2025

D. Reasoner

In order to provide high-level goal-driven reasoning, the
Reasoner makes use of Agent-oriented programming. More
specifically, we make use of the Belief-Desire-Intention
(BDI) architecture that has a proven track record in providing
complex goal-driven multi-agent systems. Fully detailing
those concepts and their history is out of scope for the current
paper, so we redirect the reader to the following review on
those topics [9].

Following our previous work, the Jason platform BDI
implementation [3] is chosen for its extensibility. Jason is
implemented in Java, and the agents are programmed using
the AgentSpeak(L) [10] agent programming language. An
example AgentSpeak(L) program is shown on Listing 1,
covering a simplified version of the program used in one
of the use-cases that makes uses of simultaneous prioritized
goals.

In order to integrate Jason into the architecture, we had to
implement a few adaptations. First, we run it on a docker
container as the other components. Second, we wrote a
custom Jason environment that instantiates an MQTT client.
This client is used to convert the events from the External
Event Manager into BDI percepts (i.e. the inputs” of the
agent program). Finally, we implemented a custom logic for
the BDI actions: once selected by the agent program, an
action is equipped with a UUID and forwarded over to the
Robot Communication Layer using MQTT. An asynchronous
latching mechanism is then used, so that the action is block-
ing until the latch is released. Another MQTT subscriber
listens to feedback from the Robot Communication Layer,
and releases the latch so that the action succeeds or fails
according to the received feedback. Finally, a specific action
named rcl_goal_management bypasses this mechanism, and
is used to directly inform the Robot Communication Layer
of meta action commands such as cancelling or suspending.

This way, we have a straightforward integration of the
BDI agent program into the overall architecture, with actions
naturally blocking until the underlying tasks either succeed
or fail.

E. Robot Communication Layer

The Robot Communication Layer is maybe the most
complex component of the architecture. It receives new
action commands from the Reasoner via MQTT, refines them
into skills, and monitors their execution on the robots. It also
communicates with the Symbol and Data Layer to forward
robot data to the World Model, and to request the grounding
of data or external function calls.

Once again, this component is implemented as a Python
package, dynamically loading a project-specific module.

At the basic level, the Robot Communication Layer pro-
vides an abstract class to implement skills. Taking inspiration
for existing skill models [11], skills are represented as a
simple state machine progressing between the Start, Run,
Interrupt, and Finish states. They can also acquire and release
resources, though this mechanism was not yet tested in the
deployments. A SkillManager class is available to interface

https://doi.org/10.34749/3061-0710.2025.6

/+ Initial beliefs =/
isuav("rl").
available("rl").

/* Percepts */

+area_goal_received(G,P) [source (percept)] : true <- !
coverarea ("d1l", G, P).
+goal_cancelled(G) [source (percept)] : currenttask(R,G,_) &
isuav (R) <- -currenttask(R,G,_); .drop_intention(
coverarea (R,G,_)); t+available(R).
+prioritychange (G, P) [source (percept)] : .intend(coverarea
R,G,P)) <- .drop_intention(coverarea(R,G,P)); !!

coverarea (R,G,P).

/% Plans */

+!coverarea(R, G, P) : isuav(R) & available(R) <- -
available (R); +currenttask (R, G, P); cover (R, G); -
currenttask (R,G,P); +available(R).

+!coverarea (R, G, P) : isuav(R) & not available(R) &
currenttask (R, H, Q) & P>Q <- -currenttask(R,H,Q); +
currenttask (R,G,P); .drop_intention (coverarea(R,H,Q))
; !!'coverarea(R,H,Q); cover(R,G); -currenttask(R,G,P)
; +available (R).

+!coverarea(R, G, P) : isuav(R) & not available(R) <- .
wait (2000); !!'coverarea(R, G, P).

Listing 1. An example BDI Agent code for managing a single UAV with
goal priority and cancellation. The Percepts are obtained via the External
Event Manager, and respectively generate a coverarea goal, cancel an
existing goal, or change the priority of an existing goal. The plans implement
the behaviours for a coverarea goal: either sending the cover action to the
Robot Communication Layer if the UAV is available, cancelling a previous
lower-priority goal if necessary, or waiting and retrying if there is a current
higher-priority goal.

with existing skills, running them in separate threads and
managing their transitions. The individual skills and their
behavior are left to the project programmer.

When an action is received, it is refined according to
project-specific “recipes”: a specific list of skill is instan-
tiated, and data may be retrieved either from a previous
execution (e.g. last waypoint reached for an area coverage
skill), or by making a request to the Symbol and Data Layer.
Each skill of the action is then started, and continuously
monitored as part of the main loop of the module. The default
behavior is akin to a logical AND: the action succeeds if
all of its skills succeed, and fails if any of its skills fails.
This can however be customized for each action by the
developer. Once an action fails or succeeds, arbitrary data
on its execution may be stored for future reference and the
final action status is forwarded to the Reasoner over MQTT,
so that the corresponding BDI agent plan can progress (or
fail). Lastly, when the special rcl_goal_management action
is received from the Reasoner, the corresponding action is
directly transitioned to the corresponding state. This allows
the Reasoner to bypass the normal behavior of the Robot
Communication Layer if necessary in the high-level reason-
ing (for example, to directly interrupt an action or make it
succeed).

V. ADAPTATION PROCESS

We now detail and summarize the process for adapting
MRSS to a new project or use-case. We go over all the
parts that may be changed, highlighting the reasoning and
specifications. A summary of this process can be seen in
Table 1.

To facilitate this process, a default project is implemented,
providing a template for every part to be changed.

Creative Commons Attribution

40 4.0 International License

Proceedings of the Austrian Robotics Workshop 2025

The first step is to create a new Docker Compose file
for the project. The file should be named docker-compose-
{project_-name}.yml (with {project_name} to be replaced by
the project name) in order to be conveniently started by the
companion script which manages the clean starting, stopping,
and rebuilding of containers. Using a separate Docker Com-
pose file lets the components use different containers and
images and allow for additional customization. The Docker
Compose file can fully reuse the default one, but the user may
modify it they need additional components to be started, or
if they wish to use project-specific Dockerfiles instead of the
default ones.

For the Event External Adapter, the user has to cre-
ate a new module in the external_adapters folder named
{project_name}.py. Similar to the default template, this mod-
ule should implement an ExternalAdapter class, making use
of the provided MQTT client to publish the Reasoner events.
This class act as an adapter with the project-specific event
representation and communication protocol.

Adapting the Reasoner consists only of adapting the
Jason-related files. This includes the {project_name}.mas2j
file, which should simply point to the agent file (and any
addition that a knowledgeable Jason developer may use).
The agent file, {project_name}.asl, is a standard Jason agent
program. The only specific requirement is that, by default,
it is assumed that the Reasoner performs action assignment
to a specific robot. This means that actions are represented
as first-order logic predicates in the shape action(robot_id,
goal_id). If the project requirements are different, this can be
changed; however the Robot Communication Layer’s action
callback will need to be changed accordingly (see below).

For the Robot Communication Layer, the user has to create
the project module rcl_{project_name}.py implementing the
RobotCommlLayer class in the projects folder. We suggest
also creating a rcl {project name} skills.py module in the
same folder to separate the main code from the skills
definitions. To implement the skills, it is necessary to import
and inherit from the Skill class from the rcl_skill_ model.py.
Each skill should have a custom implementation of the start,
run, finish, and terminate functions. The RobotCommLayer
class can be templated from the default one, but the user has
to adapt the refine_action function with the project-specific
action refinement recipes (i.e. which skills are started with
a given action). Optionally, the user can adapt the actions’
termination conditions in the check_action_status function,
and has to adapt the actionCB callback function if the action
representation in the Reasoner was changed.

Finally, the Data Layer simply requires a module in the
projects folder implementing the DataLayer class. Similar
to the default template, this class should implement MQTT
callbacks for receiving requests and robot data from the
Robot Communication Layer. Those callbacks should trigger
the necessary communication to forward the requests to
external components and populate the world model.

https://doi.org/10.34749/3061-0710.2025.6

- A
control A I

I
(Ro-)Fill of water tank
of UGV includo
=

- —>{_control filievel
<%
£ o+ —>[retum to water supply
of

firefighters

Fig. 2. Water transport UGV (top-left), hotspot recognition UAV (top-
right), and use-case diagram for the first experiment, taken from [2].

VI. DEPLOYMENTS

Multiple iterations of this architecture were deployed over
the last couple years in different projects. An initial prototype
was used the first field tests of the KISecAssist project [2].
There, Austrian firefighters had access to a User Interface
for managing one UAV and one UGV in a mountain wildfire
scenario. They could define areas for the UAV to cover and
map, where it may also detect hotspots. Those hotspots could
then be used as targets for the UGV to navigate to. The
UGV was equipped with a water tank, and firefighters could
pump water out of it. Additionally, the UAV was able to
interrupt its tasks to go back to the home base when its
battery was low, and continue where it left off afterward. The
UGV also automatically came back to the home base when
the water level was low. All the goals could be sent with
priorities, and the robots were able to suspend and resume
goals accordingly. Pictures of the two robots and the use-case
diagram for the experiment are shown on Figure 2.

This experiment used the technologies highlighted above,
but this first version was not designed for customization and
was therefore not containerized, and was implemented only
for this use-case. The communication with the User Interface
and the World Model was done via Rest API calls. The UGV
was controlled via MQTT, and the UAV via MAVlink. Even
though this first experiment highlighted different technical
problems, it was still relatively successful and received an
encouraging evaluation from the firefighters. It managed to
showcase how it was possible to integrate all the components
together with different communication technologies.

As a second step, MRSS was used as part of the
AMADEE-24 Mars analog mission taking place in Armenia
[12]. This experiment used a single mobile manipulator
equipped with different sensors. For this application, the
architecture was refined, making use of docker and providing
insights on its adaptability by applying it to another use-
case. There, the system communicated to a PostGIS database
and to the robot via MQTT. The reasoner was responsible

Creative Commons Attribution

41 4.0 International License

Proceedings of the Austrian Robotics Workshop 2025

TABLE 1
SUMMARY OF THE ADAPTATION PROCESS TO NEW PROJECTS. PARTS IN ITALIC ARE OPTIONAL AND ARE RELATED TO DEEPER CHANGES TO THE

SYSTEM. PROJECT_NAME IS TO BE REPLACED WITH THE PROJECT NAME.

Component Files to create

Specific parts to adapt

Docker Compose

docker-compose-{project_name }.yml

additional components
custom Dockerfiles

Event External Adapter {project_name } .py

ExternalAdapter class

{project_name }.mas2j

Reasoner .
{project_name}.asl

custom action definition

rcl_{project_name}.py

Robot Communication Layer rel_{project_name} skills.py

skills inheriting from Skill class

actions refinement process in refine_action function

actions termination conditions in check_action_status function
action callback in actionCB function

Data Layer dl_{project_name}.py

MQTT request and data callbacks

for checking the legality of a given action according to
the operational requirements. This second deployment of
the proposed system was overall simpler in the number of
technologies to integrate and in the high-level reasoning, but
it highlighted how the system could be adapted in another
use-case, with different requirements.

Finally, the last deployment was made for the final tests
of the KISecAssist project. There, similar technologies were
used as in the first deployment, but the system was fully
updated according to the definitions above. The use-cases
were also updated following firefighters’ requests, notably
including the requirement to directly teleoperate the UGV.
This was straightforward to implement by opening a direct
HTTP connection from the User Interface to the UGV. To
maintain safety, the User Interface first notifies the Task
Management System of the switch to direct teleoperation.
This leads the Reasoner (and then the Robot Communication
Layer via the rcl_goal_management action) to suspend all
existing goals relating to the UGV. Then, a specific skill is
used to switch the UGV to direct control mode. Once the
teleoperation is done, the user would move to a safe spot
and manually trigger the switch back to autonomous control
on the User Interface. This lead the reasoner to resume all
suspended goals so that the robot could proceed naturally.

Adding such a function highlighted the flexibility of
MRSS. Indeed, by relying on the goal and concurrency
management of the system, this behavior could be added
with only a few lines of code in the expected modules and
with very minimal debugging.

VII. CONCLUSION

We showcased and detailled a system for multi-robot
control in practical deployments. The proposed architecture
and implementation result from an iterative design, based
on requirements by end users and considerations of software
engineering principles. The main benefit of the system is its
capacity to blend agent-oriented programming for high-level
control with task-level robot control, in a flexible way that
provides clear guidelines to adapt it to different projects. The
proposed system was tested during field experiments in three
different occasions, allowing for iterating over the design and
adapt it to different use-cases. We plan to continue using and
updating the system for new projects and to accommodate

https://doi.org/10.34749/3061-0710.2025.6

new capabilities such as resource management at the skill
level. Moreover, the system would benefit for an integrated
monitoring and debug tool, making use of the internal MQTT
messages and providing test procedures.

REFERENCES

[1] J. Delmerico, S. Mintchev, A. Giusti, B. Gromov, K. Melo, T. Horvat,
C. Cadena, M. Hutter, A. Ijspeert, D. Floreano, et al., “The current
state and future outlook of rescue robotics,” Journal of Field Robotics,
vol. 36, no. 7, pp. 1171-1191, 2019.

[2] L. Frering, A. Koefler, M. Huber, S. Pfister, R. Feischl, A. Almer,
and G. Steinbauer-Wagner, “Multi-robot support system for fighting
wildfires in challenging environments: System design and field test
report,” in 2023 IEEE International Symposium on Safety, Security,
and Rescue Robotics (SSRR). 1EEE, 2023, pp. 32-38.

[3] R.H. Bordini and J. F. Hiibner, “Bdi agent programming in agentspeak
using jason,” in International workshop on computational logic in
multi-agent systems. Springer, 2005, pp. 143-164.

[4] L. Marconi, C. Melchiorri, M. Beetz, D. Pangercic, R. Siegwart,
S. Leutenegger, R. Carloni, S. Stramigioli, H. Bruyninckx, P. Doherty,
et al., “The sherpa project: Smart collaboration between humans
and ground-aerial robots for improving rescuing activities in alpine
environments,” in 2012 IEEE international symposium on safety,
security, and rescue robotics (SSRR). 1EEE, 2012, pp. 1-4.

[5] G.-J. M. Kruijff, I. Kruijft-Korbayova, S. Keshavdas, B. Larochelle,
M. JaniCek, F. Colas, M. Liu, F. Pomerleau, R. Siegwart, M. A.
Neerincx, et al., “Designing, developing, and deploying systems to
support human-robot teams in disaster response,” Advanced Robotics,
vol. 28, no. 23, pp. 1547-1570, 2014.

[6] M. Kaufmann, T. S. Vaquero, G. J. Correa, K. Otstr, M. F. Ginting,
G. Beltrame, and A.-A. Agha-Mohammadi, “Copilot mike: An au-
tonomous assistant for multi-robot operations in cave exploration,” in
2021 IEEE Aerospace Conference (50100). 1EEE, 2021, pp. 1-9.

[71 A. Dahiya, A. M. Aroyo, K. Dautenhahn, and S. L. Smith, “A
survey of multi-agent human—robot interaction systems,” Robotics and
Autonomous Systems, vol. 161, p. 104335, 2023.

[8] L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf, “Goal rep-
resentation for bdi agent systems,” in International workshop on
programming multi-agent systems. Springer, 2004, pp. 44-65.

[9]1 R. Calegari, G. Ciatto, V. Mascardi, and A. Omicini, “Logic-based
technologies for multi-agent systems: a systematic literature review,”
Autonomous Agents and Multi-Agent Systems, vol. 35, no. 1, p. 1,
2021.

[10] A. S. Rao, “Agentspeak (I): Bdi agents speak out in a logical com-
putable language,” in European workshop on modelling autonomous
agents in a multi-agent world. Springer, 1996, pp. 42-55.

[11] C. Lesire, D. Doose, and C. Grand, “Formalization of robot skills with

descriptive and operational models,” in 2020 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). 1EEE, 2020,

pp. 7227-7232.

S. Jusner, S. Moser, S. Schaffler-G1681, R. Halatschek, M. Eder, and

G. Steinbauer-Wagner, “A mission architecture for a human-robot

collaborative planetary exploration cascade,” in 2024 International

Conference on Space Robotics (iSpaRo). 1EEE, 2024, pp. 321-327.

(12

Creative Commons Attribution

42 4.0 International License

