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DOPS: Drone Optimized Performance Score for Evaluating Real-Time
Tomato Ripeness Detection
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Abstract—In recent years, deep learning (DL) has emerged
as a promising tool to detect ripeness or diseases in different
types of plants, which helps farmers monitor crop health and
determine the optimal harvest times. However, a significant
challenge is the integration of these DL models into drones
(UAVs) due to low onboard computing capacity, forcing the
images captured by UAV cameras to be transmitted to ground-
based processors, introducing delays relying on wireless data
transmission that compromise real-time identification and affect
the accuracy and efficiency of real-life classification. In this
study, we present a new metric called Drone Optimized Perfor-
mance Score (DOPS) to optimize the performance of real-time
Tomato Ripeness Detection, taking into consideration accuracy,
frames per second (FPS), and latency. We use a systematic
methodology where our research includes an approach in the
model training phases and also in the deployment phase of
two CNN models, MobileNetV2 and ResNet50, with a main
focus on evaluating key performance metrics for classification
from drones and integrated cameras. Initially, the lighter
model MobileNetV2 proves to be more effective for real-time
applications based on DOPS evaluation, but after applying
a series of optimizations to ResNet50, which is a resource-
intensive model, we can maintain its superior accuracy of 98%,
but also outperform MobileNetV2 in DOPS evaluation with
higher FPS and lower latency, proving that resource-intensive
models can also be optimized for real-world deployment.

I. INTRODUCTION

Agriculture has long been a vital pillar of society, ensuring
both economic sustainability and food security since the
beginning of humanity. The Food and Agriculture Orga-
nization (FAO) predicts that by 2050, there will be more
than 9.73 billion people on the planet, and by 2100, there
may be 11.2 billion. As a result, the food sector is under
pressure to provide the rising demand for food [1]. To
solve these problems and boost production and efficiency,
the advancement of Artificial Intelligence (AI) and Machine
Vision (MV) are playing a crucial role [2].
Many agricultural practices have been significantly ad-

vanced through the integration of AI and Machine Vision
in precision agriculture, and according to S. Jinya et al
[3] one of the new developments is the integration of AI
with Unmanned Aerial Vehicles (UAVs) to achieve higher
productivity in special, large or untargeted spaces, minimize
the cost, and automate the process. Drones or UAVs equipped

*This work was not supported by any organization
1Ylli Rexhaj is with Faculty of Mechatronics Engineering,

University for Business and Technology, 10000 Prishtina, Kosovo
ylli.rexhaj@ubt-uni.net

2Roni Kasemi is with Faculty of Mechatronics Engineering,
University for Business and Technology, 10000 Prishtina, Kosovo
roni.kasemi@ubt-uni.net

3Lucas Lammer lucas.lammer@gmail.com

with high-resolution cameras and sensors have emerged as
very valuable tools to capture detailed images and gather
important crop data, which, when combined with AI, help
farmers monitor crop health and determine the optimal
harvest times [4],[5],[6].
Although numerous research studies have been done on

the detection of ripeness or diseases of vegetables or fruits
using machine vision and deep learning (DL) [7],[8], [9], the
key challenge is deploying these DL models on UAVs due to
limited onboard computational capacity, requiring the images
captured by UAV cameras to be transmitted to ground-
based processors for analysis, introducing delays relying on
wireless data transmission that can compromise real-time
identification and affect the accuracy and efficiency of real-
time classification [10], [11], [12]. To tackle the existing
problems we present a new metric called DOPS - Drone Op-
timized Performance Score to optimize the performance of
real-time classification of tomato ripeness taking into account
accuracy, frames per second (FPS), and latency. Real-time
and low-latency classification are crucial in precision agri-
culture for timely decisions affecting crop health, yield, and
resource optimization, enabling targeted interventions and
minimizing damage [13]. The research conducts an analysis
to compare how a lightweight model MobileNetV2 [14][15]
and the resource-intensive Convolutional Neural Network
(CNN) model ResNet50 [16][17] perform on two setups:
a drone equipped with an onboard camera that captures
aerial video and streams it to a ground-based processing
unit, and a laptop using its built-in webcam in a controlled
indoor environment. The study also investigates how these
models should be optimized to achieve higher DOPS. The
key contributions of this paper are:

• Introduction of DOPS as a Novel Evaluation Metric:
The Drone-Optimized Performance Score is introduced
to evaluate model performance on edge-device drones,
integrating accuracy, FPS, and latency for real-time
applications.

• Benchmarking CNN Architectures for UAV-Based
AI: We systematically compare MobileNetV2 and
ResNet50, identifying the best-performing architecture
for drone-based AI applications.

• Optimization of ResNet50 for Real-Time Performance:
ResNet50 undergoes targeted optimizations, including
input size reduction, layer freezing, and mixed preci-
sion training, improving efficiency for real-time UAV
applications without sacrificing accuracy.

The paper proceeds as follows. The related work can be

Proceedings of the Austrian Robotics Workshop 2025

https://doi.org/10.34749/3061-0710.2025.7 43
Creative Commons Attribution
4.0 International License



D
ra
ft

found in Section 2. Our method for the experimental setup,
training phase, and DOPS evaluation measure is described
in Section 3. The results of the evaluation phase, the de-
ployment phase in a real-time application, and the model
tuning for improved performance are shown in Section 5. A
summary of the results and a proposal for further research
are presented in Section 6.

II. RELATED WORK

Rejeb et al. [18] states that drones are changing the
agricultural industry by improving efficiency and operational
costs. Drones are used to monitor diseases, reducing pesticide
usage and the need for human inspection of the crops.
Image and sensor technologies in UAVs (Unmanned Aerial
Vehicles) allow farmers to precisely monitor crops and detect
diseases early, reducing the need for human labor. However,
their study primarily offers a bibliometric overview and
does not address practical aspects of deploying affordable,
low-cost drones or the feasibility of running algorithms on
external computing devices rather than onboard hardware.
Rajagopal and Murugan [19] use AI-powered drones to de-
tect diseases in cashew trees. MobileNetV2, a deep learning
model, is used to scan photos and pinpoint diseases in
their early stages to minimize damage to the trees. Egi et
al. [20] designed a system that processes drone footage to
identify and count tomato flowers and fruits. Their method
uses YOLOv5 [21] for object detection and Deep-Sort for
tracking. While this system works well for estimating how
many fruits and flowers are present, it is focused on counting
rather than analyzing ripeness. Hobart et al. [22] shows an
example of a low-cost drone paired with a consumer-grade
RGB camera to detect ripe fruits, demonstrating the potential
for affordable solutions in agriculture monitoring with UAVs.
While their work focuses on apples, similar approaches
can be adapted for other crops, including tomatoes. For
tomato ripeness classification specifically, Wang et al. [23]
introduces a tomato ripeness detection system based on an
existing detection framework (RT-DETR) [24], which they
adapt to be more efficient. Khan et al. [25] introduce a tech-
nique that combines CNNs with transformer-based models
for tomato ripeness classification. Zhang et al. [26] alters
YOLOv8 [27] in a different investigation to manage intricate
ripeness detecting settings. Although all three models are
effective in classifying the ripeness of the crops, they are
not developed to run on the lower-end hardware of edge
devices. Hernández et al. [28] investigates a less compute-
intensive method to deal with this by classifying tomato
ripening stages using YOLOv3tiny [29]. Their approach tries
to find a compromise between accuracy and computational
requirements. Therefore, they only use data from a very
controlled environment, which makes the model less suited
outside of controlled environments.

III. OUR APPROACH: DOPS

Although ripeness detection is very critical, the main
objective of this research is to tackle the existing problem of

CNN models in real-time applications. This research is struc-
tured into two significant phases: the model training phase
and the real-time deployment phase. In the initial phase, we
concentrate on training the models and assessing the per-
formance of two architectures, MobileNetV2 and ResNet50.
We conduct a comparative analysis of their accuracy before
testing them in real-world scenarios. The subsequent phase
involves deployment, during which we introduce a new
metric known as DOPS to evaluate the effectiveness of real-
time applications. In this phase, we compare the models
using two distinct camera setups: a drone-mounted camera
and an integrated laptop camera. This methodology addresses
existing challenges related to the classification of wirelessly
transmitted frames.

A. Experimental Setup

DJI, in collaboration with Intel, created the compact,
reasonably priced DJI Tello, a fully programmable drone that
records 720p HD video with its 5-megapixel camera [30].
Due to the restricted processing capability of the drone’s
onboard processor, direct integration of DL models is not
feasible. In this instance, the Tello functions as an aerial
imaging tool, gathering visual information and transmitting
it in real time to a system on the ground (a laptop in this
case). This enables the drone to concentrate on gathering
data while the laptop’s computing capacity is used to run
complex AI models for tasks like classifying the ripeness of
tomatoes.
The drone-captured frames are sent in real time to a

ground-based laptop with powerful processing capabilities.
To better compare the two setups, the laptop also has a 720p
HD resolution camera, which allows for a better comparison
of how well the two models work with various image sources
using the same computational framework.

Fig. 1. Experimental Setup

B. Model Training Phase

The models MobileNetV2 and ResNet50 are trained using
a small dataset of 711 images, of which 294 are of ripe
tomatoes, 302 are of unripe tomatoes, and 115 are for the
background to minimize false detection in the background.
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Fig. 2. Training and Validation Accuracy

Fig. 3. Comparing Confusion Matrix

Both models are trained for 28 epochs using 569 of the
dataset’s images for training and 142 for validation. Im-
ages of 512x512 pixels are used to train the ResNet50
model, while 224x224 pixel images are used to train the
MobileNetV2, which is the primary difference between the
models. Validation accuracy and loss metrics are used to
moderate the two models’ training. As we will discuss later,
the model’s accuracy and inference latency are impacted by
the disparity in using different image size inputs. The training
and accuracy curves are illustrated in Figure 2. Starting with
a lower initial accuracy, the MobileNetV2 gradually im-
proves, reaching 93% validation accuracy, whereas ResNet50
demonstrates a faster rate of convergence and reaches a
higher validation accuracy of 99%. The key difference is
that the ResNet50 works better on larger input sizes and
contributes to better feature extraction and discrimination
between classes.
During training, both models showed a steady decline in

training and validation loss. ResNet50 had a lower and more
stable validation loss, indicating a strong fit. MobileNetV2
showed more fluctuations, which, while less stable, can
help the model avoid sharp, narrow solutions in the loss
landscape. Prior work [31] suggests that flatter solutions tend
to generalize better to unseen data.
We look at the confusion matrix for both models in Figure

Metric MobileNetV2 ResNet50
Accuracy 0.93 0.99
Macro Avg F1 0.94 0.99
Weighted Avg F1 0.93 0.99

TABLE I
PERFORMANCE COMPARISON

4 and a summary of important performance metrics in Table
1 to further assess how well the two models perform. Because
of its deeper architecture and larger input size, ResNet50
performs better than MobileNetV2 across all evaluation
metrics, according to the results of training both models. This
advantage, however, comes at the expense of higher latency
and computational demand, as MobileNetV2, a lightweight
model, shows a competitive performance.

C. DOPS

DOPS is a metric that balances accuracy, FPS (Frames
per Second), and latency to evaluate a model’s effectiveness
in real-time applications. In this case, we use the DOPS
metric to compare models in different environments such
as laptop vs drone, and also optimize the models for better
deployment on real-time applications, where accuracy indi-
cates the classification accuracy of the model, latency (ms) is
the time taken for a single inference, including preprocessing
and post-processing and FPS measure how many images the
model processes per second.

DOPS=
Accuracy×FPS

Latency
(1)

Different deployment environments prioritize different fac-
tors for example in cloud-based applications, accuracy, and
FPS are more important as computational resources are not a
constraint, but on the other hand in low-power edge devices
such as drones, latency, and power consumption are critical,
making efficiency a key factor, adding a weight assigned to
each parameter based on the real-time application. . However,
detailed power consumption analysis is left for future work
and will be integrated in subsequent stages of development.

IV. RESULTS

The evaluation of deep learning models for real-time
application requires a comprehensive analysis beyond tra-
ditional accuracy-base metrics, as introduced in the training
phase section. So, using DOPS, we analyze the real-time
performance of MobileNetV2 and ResNet50, ensuring the
model’s reliability and practical deployment constraints, such
as FPS and latency, which play a critical role in real-world
applications.

A. Deployment Phase

Using two different camera setups, the drone-mounted
camera and an integrated laptop camera, the deployment
phase concentrates on testing the two models’ real-time
tomato ripeness detection performance. The drone itself does
not perform any onboard processing, instead, it operates as a
mobile image acquisition platform, transmitting frames wire-
lessly in real-time to the laptop from an aerial perspective.
To ensure consistency, all image processing is carried out
on a laptop equipped with a dedicated GPU. In contrast, the
laptop setup eliminates any wireless transmission delay by
using the integrated camera to capture frames. In real-time
testing, the main difference between the two configurations
was the effect of wireless transmission latency.

Proceedings of the Austrian Robotics Workshop 2025

https://doi.org/10.34749/3061-0710.2025.7 45
Creative Commons Attribution
4.0 International License



D
ra
ft

Fig. 4. Real-time FPS and latency acquisition for DOPS evaluation, comparing MobileNetV2 and ResNet50 across drone and laptop setups.

The drone camera wirelessly transmits the frames, as we
previously discussed, but this leads to network-induced de-
lays that result in irregular frame drops and slow processing
time. Even though the aerial perspective covers a larger
range of view, latency has a detrimental impact on real-
time classification. In contrast, directly collected frames on
the laptop eliminate transmission latency, enabling faster
inference and greater FPS. However, because of its relatively
limited field of view, the fixed camera proves less effective
in monitoring large crop fields.
During the testing phase, both models MobileNetV2 and

ResNet50 are tested in real-time in both setups, compared,
and evaluated using the DOPS metric, the results of which
are shown and compared in section 4 B, from the real-time
acquisition. The live performance of both models is shown
in Figure 4 with the labels of live measurement results of
FPS, latency, and accuracy.

B. DOPS Evaluation

Following the real-time deployment phase, we evaluate
MobileNetV2 and ResNet50 in laptop and drone configura-
tions using the DOPS. DOPS provides a balanced assess-
ment that reflects real-time feasibility, which is crucial for
agricultural AI applications, in contrast to traditional eval-
uations that only consider accuracy. The primary objective
of this evaluation is to assess each model’s performance by
combining accuracy, frames per second (FPS), and latency
as critical variables. Stated differently, an AI model is
considered better when it has a higher DOPS score, meaning
it can process frames quickly and with minimal latency while
maintaining high classification accuracy, on the other hand,
lower DOPS indicates worse real-time performance. A higher
DOPS score indicates that the model is well-suited for real-
time applications, as speed and precision are crucial in drone-
based agricultural monitoring [32].
Despite this, MobileNetV2 is an optimal model for real-

time inference, maintaining a strong balance between accu-
racy and processing speed.
In contrast, the resource-intensive ResNet50 model, known

for its superior accuracy, performs well in terms of classifi-

Setup Laptop Drone
Accuracy 0.93 0.93
Latency 62.26 65.56
FPS 15.44 15.05
DOPS 0.23 0.21

TABLE II
MOBILENETV2 (LAPTOP VS DRONE) DOPS EVALUATION

Setup Laptop Drone
Accuracy 0.99 0.99
Latency 173.52 312.19
FPS 5.61 3.30
DOPS 0.032 0.010

TABLE III
RESNET50 (LAPTOP VS DRONE) DOPS EVALUATION

cation accuracy, with 99% accuracy in both sets. However,
as seen in Figure 5, its computational intensity significantly
impacts its real-time usability. Table 3 shows that compared
to MobileNetV2, the FPS in the laptop setup is only 5.61,
and in the drone setup, it is much lower at 3.30. Additionally,
ResNet50 has a significantly greater latency, reaching 312.19
ms in drone setup and 173.52 ms in laptop setup. After
the evaluation, the DOPS results of ResNet50 are far lower
than those of MobileNetV2. Scoring 0.0320 on the laptop
and only 0.0105 for the drone setup. This demonstrates
that, despite its great accuracy, ResNet50 is not appropriate
for real-time drone-based agricultural applications due to its
slow inference speed and high latency.
The main factor causing ResNet50 to perform worse than

MobileNetv2 in all performance metrics is its large input size
(512x512), while MobileNetV2 has an input size of 224x224.
This resolution has a significant effect on processing time
and computational power, leading to higher latency and a
lower frame rate since each image requires more memory and
computation with each forward pass. As a result, ResNet50
is ineffective for real-time applications and takes longer to
analyze each frame. This leads to lower FPS and greater
latency, whereas MobileNetV2’s smaller input size enables
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Fig. 5. DOPS Evaluation comparison of MobileNetV2 & ResNet50 (Laptop
vs Drone)

faster processing with less memory usage, allowing for
smoother and more stable real-time inference. To add to this,
ResNet50 is a model with more parameters and convolutional
layers than MobileNetV2, which uses fewer computational
resources. Wireless transmission affects both models, with
ResNet50’s larger input size causing heavier data packets
and increased network latency. MobileNetV2’s smaller in-
put size leads to faster data transfer and less lag, making
it more effective in drone-based agricultural monitoring.
ResNet50 performs worse in real-time deployment due to its
deeper network architecture, larger input shape, and higher
computational demands. However, MobileNetV2’s ability to
balance speed and accuracy makes it more suitable for real-
time AI applications, especially in UAV-based agricultural
monitoring.

C. Optimizing ResNet50 for Real-Time Use

In this section, we’ll maximize ResNet50’s effectiveness
without sacrificing its high classification accuracy. Our main
optimizations include freezing the first 50 layers of ResNet50
and lowering the size of the input image. We also use
TensorFlow’s automatic mixed precision feature to apply
mixed precision training, using FP16 computation whenever
feasible. A balance between computational efficiency and re-
tention is achieved by reducing the input size from 512x512
to 256x256, which increases inference speed without signif-
icantly affecting classification performance.
Using mixed-precision training optimization not only re-

duces GPU memory usage but also accelerates training and
inference speed, making the model more appropriate for
real-time deployment. Freezing the layers allows the model
to retain its ability to extract robust features, which results
in faster model convergence and decreased processing time
per frame. Following training with these adjustments, the
model’s training performance is displayed in Figure 6. It

Fig. 6. Optimized ResNet50 Accuracy over Epochs

is evident that the optimized ResNet50 maintains a high
training and validation accuracy of 98% throughout the
training phase. This time, 30% of the data is split for
validation during training, and we observe that only four
images are incorrectly classified in Figure 7 in the confusion
matrix. But evaluating the model in real-time testing during
the deployment phase is the primary objective through the
DOPS Evaluation.

Fig. 7. Confusion Matrix of Optimized ResNet50

Setup Laptop Drone
Accuracy 0.98 0.98
FPS 20.93 21.69
Latency (ms) 42.89 46.74
DOPS 0.48 0.45

TABLE IV
DOPS EVALUATION FOR OPTIMIZED RESNET50

The optimized ResNet50 model outperforms Mo-
bileNetV2 in real-time inference speed and latency, despite
maintaining a high classification accuracy of 98%. The laptop
setup achieves an FPS of 20.93, while the drone setup
slightly outperforms it at 21.69 FPS. The optimizations in-
crease processing speed without impacting performance. La-
tency, a key variable of the DOPS evaluation, is substantially
reduced compared to the model before the optimization. The
laptop setup achieves a latency of 42.89 milliseconds, while
the drone setup exhibits a slightly higher latency of 46.74
milliseconds, primarily due to wireless transmission delay.
These latency improvements are significant compared to the
standard ResNet50 implementation, making the optimized
model more viable for real-time classification in drone-based
agricultural monitoring. The overall DOPS score confirms
the success of these optimizations, with the laptop setup
achieving a DOPS score of 0.478, while the drone setup
slightly lags at 0.454 due to network-related delays. These
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results highlight that the optimized ResNet50 successfully
balances accuracy and real-time performance, making it
a viable solution for UAV-based agricultural classification
tasks.

V. CONCLUSIONS

In this work, we introduce a new metric for evaluation the
Drone Optimized Performance Score (DOPS), a benchmark
for real-time deep learning inference on UAVs. DOPS is
a metric that takes into account accuracy, frame rate, and
latency, providing a simple yet powerful evaluation for the
real-time application of AI models. As a finding initially,
MobileNetV2, being a lightweight model, outperforms the
heavy resource model ResNet50 in real-time inference speed
and, therefore, overall in DOPS. But, after some optimiza-
tions such as input size reduction, mixed-precision training,
and layer freezing made on the ResNet50, it was able to
surpass MobileNetV2, raising the DOPS score from 0.010
to 0.45 and improving the real-time performance while still
maintaining a high classification accuracy. In agricultural
monitoring, where timely and precise identification of issues
like crop stress or insect outbreaks is crucial to preventing
yield loss and guaranteeing resource efficiency, this study
shows that DOPS is a useful metric for assessing real-time
applications. Also, it provides a framework for improving
deep learning models’ performance on edge devices such
as UAVs while still maintaining high accuracy. Future work
includes further optimizing deep learning models for UAV-
based inference by integrating advanced model compression
techniques such as pruning and quantization. These methods
will reduce computational overhead while maintaining high
classification accuracy. Additionally, deploying the models
directly on the edge devices is work that will be implemented
to eliminate transmission delays, improving real-time respon-
siveness. Also, to extend the applicability of DOPS, power
consumption will be incorporated as a metric, enabling more
energy-efficient AI deployments on battery-powered drones.
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