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Sim2Real Transfer for Vision-Based Grasp Verification
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Abstract—The verification of successful grasps is a crucial
aspect of robot manipulation, particularly when handling de-
formable objects. Traditional methods relying on force and
tactile sensors often struggle with deformable and non-rigid
objects. In this work, we present a vision-based approach for
grasp verification to determine whether the robotic gripper
has successfully grasped an object. Our method employs
a two-stage architecture; first YOLO-based object detection
model to detect and locate the robot’s gripper and then a
ResNet-based classifier determines the presence of an object.
To address the limitations of real-world data capture, we
introduce HSR-GraspSynth, a synthetic dataset designed to
simulate diverse grasping scenarios. Furthermore, we explore
the use of Visual Question Answering capabilities as a zero-
shot baseline to which we compare our model. Experimental
results demonstrate that our approach achieves high accuracy
in real-world environments, with potential for integration into
grasping pipelines. Code and datasets are publicly available at
github.com/pauamargant/HSR-GraspSynth

Index Terms—Grasp verification, Robot manipulation, De-
formable objects, Vision-based grasping, YOLO object detec-
tion, ResNet classification, Synthetic dataset, Visual Question
Answering.

I. INTRODUCTION

Deformable object manipulation is a growing field of
research in robotics due to its relevance in a wide range
of tasks [26]. Deformable objects are a common occurrence
in both industrial and household environments, and their ma-
nipulation poses challenges when compared to rigid objects.
Their deformation and varying response to traditional force
and tactile sensing methods during the grasping process in-
troduce significant uncertainty, making it a more challenging
task [25].
One critical aspect of deformable object manipulation is

the verification of successful grasping. Traditional meth-
ods [1], which often rely on the object’s geometry and force
and tactile sensors, struggle to account for the deformation
of the object and its lack of internal structure and resis-
tance [18]. This requires the use of more advanced sensors
and control algorithms, which are often robot and situation
specific.
In this context, computer vision has emerged as a promis-

ing tool to address these challenges. Various methods have
been proposed to use 2D and 3D vision during the grasping
process for tasks such as rope and cloth manipulation [12],
[19]. These approaches use vision in combination with other
input modalities such as tactile sensing to estimate the
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object’s deformation during the grasping procedure. How-
ever, most proposed methods focus on the grasping control
feedback and are object and task specific. These constraints
and their complexity make these models unsuitable for the
task of verifying a successful grasp.
This paper explores the application of computer vision for

verifying whether a robot gripper has successfully grasped
an object, with a focus on methods applicable to deformable
objects. Our approach, which can be easily adapted to
different robots and tasks, leverages object detection and
machine learning to detect the grasping using the robot’s
on device camera. Our main contributions are as follows:
1) We introduce a two-stage vision-based grasp verifica-

tion model combining YOLO-based object detection
and ResNet-based classification, improving generaliza-
tion across different robotic platforms and object types.

2) We present HSR-GraspSynth, a synthetic dataset de-
signed to simulate diverse grasping scenarios, address-
ing the limitations of real-world data collection and
annotation.

3) We investigate the integration of Multimodal Large
Language Models (LLMs) with Visual Question An-
swering (VQA) capabilities as a viable alternative for
zero-shot learning in grasp verification.

II. RELATED WORK

Deformable object manipulation is an active area of re-
search in robotics with wide practical applications [26]. Non-
rigid objects are common in both industrial and domestic
settings, making robots that can handle them especially use-
ful. However, manipulating them poses additional challenges
compared to rigid objects.
One of the most important aspects of the grasping pipeline

is the ability to verify its success. Traditional methods use
object geometry, force, tactile sensors [17], and proximity
sensors [8], but often struggle to account for possible de-
formations and the lack of internal structure in deformable
objects.
In this context, computer vision has been successfully

applied to these challenges. 2D and 3D vision methods
have been proposed for tasks like rope [12] and clothing
manipulation [19]. These methods combine vision with other
modalities to determine grasping poses and account for the
object’s deformation during the procedure.
However, the majority of these methods are focused on

grasping estimation and the control feedback and are robot,
object and task specific. Computer vision solutions have
been proposed as a simpler alternative for the task of
verification [13]. In 2020, the use of low-cost machine vision
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cameras installed in the robot gripper was studied [13]. They
trained both YOLO [16] and MobileNet [6] models for this
task, achieving high precision with different camera systems.
Inspired by this approach, we aim to develop a similar

solution for robots with head-mounted cameras, such as the
PAL Robotics Tiago, Toyota HSR, and Boston Dynamics’
Atlas, enabling vision-based grasp verification without rely-
ing on gripper-mounted cameras.

A. Synthetic Datasets

Synthetic datasets have become increasingly popular for
object grasping research [14]. With the advent of deep neural
networks, the large amounts of data required make the use of
synthetic data an attractive alternative to the laborious task
of acquiring and annotating real world data.
Synthetic datasets have been widely used for training

computer vision models for object detection and robotic
tasks. Tools such as GraspIt [11] and BlenderProc [4] can
be used to generate large-scale, photorealistic, and physics-
aware datasets. By using commonly used object datasets such
as YCB-V [24] and ShapeNetV2 [2], synthetic data makes
it possible to efficiently train models in zero-shot situations
or when real data is costly to obtain. Common use cases are
object detection and pose estimation [9], [22].
However, while there is a wide availability of synthetic

datasets for grasp planning, there is a lack of datasets
specifically designated for grasp verification. Current datasets
do not capture the nuances of successful and failed grasps,
such as occlusions, edge cases, and variations in sensor
perspectives. This highlights a significant gap in the field and
the need for dedicated synthetic datasets to support research
in grasp verification.

III. HSR-GRASPSYNTH DATASET

Training a robust and generalizable model for grasp veri-
fication requires a diverse and extensive dataset. However,
collecting real-world data is often expensive and time-
consuming, making synthetic data an attractive alternative.
Synthetic data should be diverse and similar enough to the
real-world distribution in order to minimize the Sim2Real
gap. [21], [23].
With these goals in mind, we created the HSR-GraspSynth

dataset for grasp verification. It consists of annotated RGB
images, referred to as examples, showing the HSR robot’s
gripper from the perspective of its head-mounted camera.
Each example is annotated with a bounding box around the
visible parts of the gripper and a binary label indicating
whether an object is present in it (object or no_object).
Synthetic examples are generated from 3D simulated

scenes, where a full environment including the robot and
background distractors is randomly configured. Several ex-
amples are generated from the same scene, forming a batch.
The dataset consists of 12.000 examples and a separate

validation dataset composed of 5.000 images.

Fig. 1: Examples from the proposed dataset. The top row
shows examples with an object within the gripper while
the lower row corresponds to no object. Each example
corresponds to a different batch.

A. Data Generation

Synthetic data is generated using BlenderProc, a procedu-
ral pipeline that integrates Blender within Python to facilitate
the rendering of large datasets.
For each batch of the dataset, a new scene is generated. A

model of the robot is positioned at the centre of an enclosed
room, with its arm extended in front of its head. To simulate
realistic environments and obtain robust models, between 2
and 15 distractor objects are randomly scattered within the
field of view of the robot using a physics-based algorithm to
ensure physically plausible poses and varied object scales.
For training examples, distractors are sampled from the

ShapeNetV2 dataset, while for the validation set, objects
from the YCB-V dataset are used.
Ten examples are generated per batch to improve com-

putational efficiency and mitigate some of BlenderProc’s
limitations.
For each example within a batch, the robot’s arm’s pose

is randomized by perturbing the positions of the arm joints
and the camera orientation. A randomly sampled object
is then placed within the robot’s gripper with probability
0.5 to generate both object and no_object examples. The
grasped object is sampled from the same dataset used for
the distractor objects.
When an object is placed between the gripper fingers, the

object is first moved away from the robot to avoid collisions,
and the gripper fingers are partially closed to make contact
with the object. A convex hull approximation is used to
detect when the object collides with the gripper fingers. The
gripper fingers are slowly closed until a collision is detected.
Fig. 1 shows six examples of rendered images of both

classes. The gripper can be observed in several positions,
with different distractor objects in the background.

IV. GRASPCHECKNET

The proposed approach for grasp verification is composed
of a two-stage architecture that combines object detection
and image classification. Object detection is used to localize
the robot’s gripper within the image. This makes the archi-
tecture adaptable to different robotic platforms and object
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Fig. 2: Illustration of the two-stage model architecture using
object detection and image classification. The YOLO object
detection model localizes the robot’s gripper in the image,
and the ResNet classification model uses the cropped image
to determine whether there is an object in the gripper.

types, while the image classification model verifies whether
the grasp was successful.

A. Model Architecture

GraspCheckNet consists of two primary components; a
YOLO-based object detection model and a ResNet-based
image classification model. The object detection stage local-
izes the robot’s gripper in the camera’s field of view, while
the classification model determines whether the gripper is
holding an object.
The object detection model is a pretrained YOLO model

fine-tuned on the HSR-GraspSynth dataset. The image clas-
sification model is based on a ResNet [5] architecture, and
operates on the detected region of interest containing the
gripper produced by the detector.
The presence of an object is formulated as a binary

classification task, where a label of 0 indicates the presence
of an object and a label of 1 signifies its absence.
This labeling scheme aligns with our objective of detecting

unsuccessful grasp attempts.
An overview of the model’s architecture is shown in Fig.

2.
The object detection step facilitates the classification task

by eliminating irrelevant and unnecessary information from
the image, focusing on the region of interest containing
the gripper. Alternatively, this stage could be replaced by
a geometric-based approach if the robot’s characteristics and
kinematics are well-defined and accessible or by incorpo-
rating a predefined pose following the grasping procedure,
where the robot positions the gripper directly in front of
the camera. However, these alternative approaches require a
higher degree of integration and interaction with the grasping
pipeline, as they interrupt the grasping process and require
additional time.

V. EXPERIMENTS
To evaluate the performance of the proposed grasp veri-

fication model and the accompanying dataset, we conduct
experiments on both synthetic and real-world data. The
primary objectives are to assess the model’s effectiveness
in accurately detecting the gripper and determining its state,
as well as to evaluate the domain gap between the synthetic
and real domain. Additionally, we compare it with an LLM-
based Visual Question Answering approach as a few-shot
alternative.

A. Data Acquisition

To assess the model’s performance in real-world con-
ditions, a smaller evaluation dataset of real-world images
is created using the robot’s onboard RGB camera. Data
collection is conducted in a room with furniture and domestic
objects using Toyota’s Human Support Robot (HSR).
The robot is placed in various environments with its arm

extended, and its head-mounted camera oriented towards
the gripper. Images are captured under different conditions,
including scenarios where the gripper is empty and fully
closed and others where it contains objects. A total of 518
real images, which we refer to as examples, are collected
distributed as follows:

• 158 examples where the gripper is empty.
• 150 examples where the gripper holds 16 different rigid
objects. A comprehensive set of YCB-V objects and
other household items found within the label are used.

• 210 examples where the gripper holds 23 different
deformable objects. Various household items such as
clothes, papers, chip bags and tissues are used.

Each object is captured between 5 and 10 times. The robot
is placed in various locations. The head is gradually rotated
between consecutive captures of the same object to change
the field of view and background.

B. Object Detection Model

We employ a fine-tuned YOLO11-l object detection
model. The model is fine-tuned using Ultralytics’ pretrained
YOLO11-l [7] on the proposed synthetic HSR-GraspSynth
dataset. To enhance the training process and mitigate the
Sim-to-Real gap, various data augmentation techniques are
applied during training. Used data augmentation techniques
include perspective and affine transforms, and colour jitter,
brightness and contrast changes and image compression.
The YOLO11-l model is fine-tuned for 100 epochs using

Ultralytics’ model trainer with default parameters. The best
model in terms of mean Average Precision (mAP) on the
validation set is kept after the training process.
Due to the Sim-to-Real gap, a low confidence threshold is

required during inference on real images, leading to a large
number of candidate detections distributed across different
clusters in the image. To mitigate this issue, the confidence
threshold is gradually reduced until detections appear.
When a low threshold value is used, a large number of

detections localized around different clusters in the image
can appear, leading to false positive detections. To mitigate
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Fig. 3: Illustration of the clustering procedure applied to
the detected bounding boxes. DBSCAN is used to identify
clusters and assign a cluster label to each bounding box (left).
Subsequently, the highest confidence bounding box from the
cluster with the highest total confidence score is selected as
the final detection (right).

this, we implement a post-processing refinement step after
detection. Density-Based Spatial Clustering (DBSCAN) is
used to identify clusters of detections within the image, as
shown in Fig. 3. DBSCAN is preferred to other clustering
methods such as K-means because it does not require a pre-
defined number of clusters. The clusters are ranked according
to the cumulative confidence scores of the bounding boxes
they contain. The final detection is selected as the highest
confidence bounding box within the highest ranked cluster.

C. Image Classification

The image classification model is responsible for deter-
mining whether the gripper contains an object or is empty.
For this task, a pretrained ResNet-18 model is employed.
Within the wider ResNet model family, the ResNet-18 was
chosen for having fewer parameters than the bigger models
of its family, making faster during training and inference.
The model’s head is adapted for the task of binary classifi-

cation. The original head is replaced by two fully connected
layers with ReLU activation functions and dropout layers
in-between [20].
The model is trained using ground truth cropped synthetic

images containing the robot’s gripper. Data augmentation
techniques are used to make the model robust to the synthetic
to real domain transfer. The model is trained using an Nvidia
A40 GPU in different stages. First, only the head is trained
using a large dropout rate of 0.7 to 0.5 to make the model
more robust. Afterwards, the learning and dropout rates are
decreased while also unfreezing the backbone’s last layer.

D. Real-world evaluation

To validate the model’s effectiveness in real-world condi-
tions, a qualitative evaluation is conducted. First, the object
detection model (stage 1) is evaluated independently, fol-
lowed by the evaluation of the classification module (stage
2) using the detections as input.
1) Object Detection Model: We first evaluate the ability

of the detection model to localize the gripper within the
image. Intersection over Union thresholds are not used for the
assessment. Instead, the detections are qualitatively assessed
based on whether the bounding boxes sufficiently localize
and encompass the robot’s gripper. The fine-tuned YOLO

Fig. 4: Sample detections using the object detection model.
The red rectangle shows the detected bounding box. Top
and lower rows show correct and incorrect detections re-
spectively.

model is used to obtain the gripper’s bounding box for each
of the 518 test images. Each detection is manually reviewed
and considered correct if it contains, at least partially, both
gripper fingers and the majority of the bounding box area
corresponds to the gripper and object, with limited inclusion
of background regions. Detections that mostly contain the
background or fail to include both gripper fingers are labeled
as incorrect.
Table I shows the results of this evaluation. We observe

that the model is able to properly locate the gripper within the
image in 98% of no_object examples, 94.67% of examples
where there is a rigid object within the gripper and 96.67%
of examples when there is a deformable object in the gripper.
Nevertheless, as shown in Fig. 4 the evaluation is limited

by not taking into account the IoU. During the experiments it
was observed that predicted bounding boxes tend to properly
contain the gripper in terms of width, but often do not
fully encompass it on the vertical axis. During inference we
mitigate it by padding the detected bounding box.
2) Image Classification Model: The second stage of the

model is evaluated using the cropped images obtained from
the object detection outputs. Detected bounding boxes are
used to crop the image region containing the gripper, with
additional margins added to compensate for possible errors.
In order to account for the gap between synthetic and real

data, the probability threshold for assigning to label 1 is

TABLE I: Evaluation of the object detection model on the
real-world dataset. Num. detected refers to the number of
examples where the predicted bounding box is qualitatively
correct. Percentage of objects correct refers to individual
objects that have been detected correctly in all the examples
they apear in the dataset.

Category Num. Images
Num.

Detected % Detected
% Objects
Correct

No Object 158 155 98.10 N/A
Rigid 150 142 94.67 62.50

Deformable 210 203 96.67 82.61
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lowered to 0.15 from 0.5 during evaluation.
Table II shows the evaluation metrics of the model across

the no_object and object categories, and differentiating by
rigid and deformable object. While table III contains the
precision and recall values for the task of detecting no_object
instances.
The model has an accuracy of 74.7% in examples where

the gripper is empty and on 82.9% of deformable object
instances, indicating that it is able to properly recognize non-
rigid objects within the gripper.
In terms of detecting that the gripper is empty, as a class

of binary classification, it achieves a precision value of only
0.678 albeit with a higher recall value. This lower precision
value is indicative of the presence of false positives during
the detection. In our case, in which we are mostly interested
in detecting failed grasps, the focus is on obtaining a higher
recall value.
In terms of execution time, the average inference time is

of 28ms on an A40 GPU, when not taking into account the
initial mode loading time. Extrapolating this result to less
powerful devices indicates the suitability of the model for
low-latency applications.

TABLE II: Classification accuracy per category. Bold indi-
cates maximum, underline indicates minimum performance.

Category
GraspCheckNet
Accuracy (%)

GPT4-o
Accuracy (%)

Llama 3.2 11B
Accuracy (%)

No Object 74.7 95.0 48.7
Rigid 86.7 95.3 68.7

Deformable 82.9 78.1 60.0

TABLE III: Precision and Recall score per model. Bold indi-
cates maximum, underline indicates minimum performance.

Model Precision Recall
GraspCheckNet 0.678 0.749

GPT-4o 0.739 0.95
Llama 3.2 0.357 0.513

E. Visual Question Answering

In order to establish a baseline to which compare our
GraspCheckNet model, we evaluate the use of state-of-the-art
LLMs for Visual Question Answering as a zero-shot method
for image classification. Our goal is to leverage their state-
of-the-art performance in visual reasoning tasks to evaluate
our model’s performance.
We follow a visual-question-answering approach in which

an LLM is prompted with the task that it should do and
how to reply to it. The same prompt is used for all instances
and no concrete information about the object in the gripper
was included even though it might be available in certain
grasping pipelines. We evaluate two LLMs to compare the
effects of the model size and whether on-device models
are able to successfully complete the task. We test GPT4-
o [15] and llama 3.2 Vision 11B [10]. GPT4-o is tested
using OpenIA’s API while Llama 3.2 Vision is used through

UnSloth’s implementation of the model [3], which reduces its
memory footprint. We use both the state of the art GPT4-o,
which is closed-source and has large memory requirements,
and Llama 3.2 in its 11B parameters version. This latter
model can be run in consumer devices with approximately
6GB of GPU or unified system memory, making it feasible
to deploy in practical scenarios.
Table II shows the results of evaluating the VQA models

on the real-world evaluation dataset. Llama was not able
to successfully perform the VQA task, achieving a recall
of only 0.513. When asked concrete questions about the
images, the model often produces hallucinations or does not
correctly understand the scene. This indicates that further
advancements in vision LLMs or the use of larger models is
required.
On the other hand, GPT4-o is able to correctly detect most

instances of the gripper being empty, with a recall of 0.95.
However, it shows a relatively large amount of false positives
in deformable objects, recognizing the gripper as empty. This
does not happen uniformly across all objects. It is not able to
properly detect some clothing items such as a black glove,
a kitchen drape, a t-shirt and a hat, which account for 33
out of the 46 wrong classifications of deformable objects.
These objects present uniform textures, without defining
features, and when grasped by the gripper they do not hold a
recognizable shape. This might indicate that the vision model
focus on the detection of an object and not in identifying
whether there is anything in the gripper, making it susceptible
to false positives when there are difficult to recognize objects.
It presents a higher amount of false positives, deformable
object instances classified as empty, than our model while
it has a lower amount of false negatives, instances of empty
gripper classified as not empty.
The use of vision language models, even when using

smaller models such as Llama 3.2 11B, requires expensive
compute and requires more execution time than our proposed
model. Open AI’s GPT4-o required on average 2.27 seconds
per image, albeit with a high standard deviation of 1.53
seconds. Due to the use of a remotely hosted API, the
model’s latency can often not be stable and a stable internet
connection is required. The higher latency and requirement
for internet connection makes this method less reliable for
real-world applications. In terms of cost, each instance
costs approximately 0.001C to execute. While this cost is
relatively low, it can quickly scale up if a large amount of
classifications is required.
When compared to our model, GraspCheckNet offers

lower recall but can be run on-device with a lower inference
time, making it feasible for low-latency applications and
integration within grasping pipelines. Our model achieves
comparable performance in detecting the presence of de-
formable objects but is less accurate to detect the gripper
being empty.

VI. CONCLUSION AND FUTURE WORK

This paper presents GraspCheckNet, a vision-based ap-
proach for grasp verification using head-mounted cameras,
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with a particular emphasis on deformable object manipula-
tion. Our two-stage architecture uses object detection and
image classification to verify successful grasps, addressing
the challenges posed by non-rigid and deformable objects.
We introduce HSR-GraspSynth, a synthetic dataset for train-
ing grasp verification models and help address the limitations
of real-world data acquisition and reduce the Sim2Real gap.
Experimental results demonstrate that the proposed approach
properly detects the presence of an object within the robot’s
gripper, particularly for deformable objects. Our approach
maintains consistence performance while offering significant
advantages in terms of inference and the ability to run on-
device without requiring external APIs.
Future work should focus on the integration within grasp-

ing pipelines, exploring how real-time verification can be
of use and how a better integration with the pipeline can be
used to increase the model’s accuracy. Furthermore, domain-
adaptation techniques, both supervised and unsupervised
could be explored to mitigate the Sim2Real gap.
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