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LLM-Empowered Embodied Agent for Memory-Augmented Task Planning
in Household Robotics

Marc Glocker1,2, Peter Hönig1, Matthias Hirschmanner1, and Markus Vincze1

Abstract—We present an embodied robotic system with an
LLM-driven agent-orchestration architecture for autonomous
household object management. The system integrates memory-
augmented task planning, enabling robots to execute high-level
user commands while tracking past actions. It employs three
specialized agents: a routing agent, a task planning agent, and a
knowledge base agent, each powered by task-specific LLMs. By
leveraging in-context learning, our system avoids the need for
explicit model training. RAG enables the system to retrieve
context from past interactions, enhancing long-term object
tracking. A combination of Grounded SAM and LLaMa3.2-
Vision provides robust object detection, facilitating semantic
scene understanding for task planning. Evaluation across three
household scenarios demonstrates high task planning accuracy
and an improvement in memory recall due to RAG. Specifically,
Qwen2.5 yields best performance for specialized agents, while
LLaMA3.1 excels in routing tasks. The source code is available
at: https://github.com/marc1198/chat-hsr

Index Terms—Embodied AI, Task Planning, Memory Re-
trieval

I. INTRODUCTION

Despite recent progress in robotics and artificial intelli-
gence, robots still struggle to adapt flexibly to the diverse,
dynamic situations of real-world environments, particularly
in household settings [24]. While symbolic task planning
with languages like the Planning Domain Definition Lan-
guage (PDDL) [11] is effective in domains with fixed rules
and predictable object categories, it lacks the adaptabil-
ity required for open-ended household environments. In
such settings, robots must deal with ambiguous user com-
mands, detect novel or unstructured objects, and respond
to constantly changing spatial configurations [24]. These
limitations motivate our hypothesis that a modular LLM-
driven system can enhance flexibility by leveraging natural
language understanding, contextual reasoning, and memory-
based adaptation. We provide a proof-of-concept implemen-
tation and assess its performance in real-world household
tasks.
In this work, we present an embodied robotic system with

an LLM-driven agent-orchestration architecture, where spe-
cialized software agents collaborate to address long-horizon
household tasks. Recent advances in Large Language Models
(LLMs) [13], [4], [15], [23], [5] have improved systems real-
world understanding, enabling common-sense reasoning in
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Fig. 1: Our LLM-driven robotic system autonomously plans
tasks and retrieves past interactions to improve object
handling, illustrated by LLM-enforced task planning and
memory-retrieved reasoning in a household setting.

human language and making them accessible to researchers.
These advances combined with in-context learning [26]
enable flexible embodied task planning by decomposing
high-level commands, such as ”clear the dining table”,
into actionable steps based on detected objects [2], [7],
[25], [9], [21]. By integrating Grounded Segment Anything
Model (Grounded SAM) [17] and LLaMa3.2-Vision [4], our
system creates grounded task plans. Unlike most other works,
we address long-term operations by maintaining action and
environment records, utilizing Retrieval-Augmented Gener-
ation (RAG) for efficient memory retrieval. Our approach
enables the robot to autonomously organize and retrieve
objects, interpret complex tasks, and provide updates on
object locations, all while ensuring privacy through the use
of offline LLMs and avoiding explicit model training. To
illustrate the systems interaction, Fig. 1 shows an example
of our system in action.
In summary, we present the following key contributions:

• A long-horizon task planner for household tasks lever-
aging in-context learning and offline LLMs.

• Use of RAG for efficient memory retrieval and object
tracking.

• A modular agent-orchestration system that improves
robustness and modularity.

• Evaluation of the system’s performance in three real-
world household scenarios.

This paper is structured as follows: Section II reviews
related work in the areas of task planning and memory mech-
anisms. Section III details the proposed system architecture.
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Section IV describes the experimental setup and household
scenarios. Section V presents the results. Finally, Section VI
concludes the paper and outlines directions for future work.

II. RELATED WORK

In this section we discuss related work for action and task
planning, as well as memory and knowledge base.

A. Action and Task Planning

Recent advancements in prompt engineering have im-
proved the problem-solving capabilities of LLMs [26], [28],
enabling the generation of structured plans without fine-
tuning. Consequently, modern agent architectures leverage
LLMs to dynamically react to execution failures [27], [7]
and expand their context by retrieval [8] or external tools
[19], [18]. However, LLMs lack an inherent understanding
of a robot’s physical abilities and real-world constraints.
SayCan [2] addresses this by integrating value functions of
pre-trained robotic skills to ensure feasibility, whereas Huang
et al. [6] leverage LLMs to match high-level plans with low-
level actions through semantic mapping. Some works treat
LLMs as programmers rather than direct decision-makers:
Code-as-Policies [9] and ProgPrompt [21] allow LLMs to
generate structured code for robotic executions, enhancing
flexibility but adding an execution layer.
Pallagani et al. [14] found that LLMs perform better as

translators of natural language into structured plans rather
than generating plans from scratch. This ensures feasible
actions based on predefined world models [20], [10]. These
approaches are particularly effective in highly controlled
environments, but present challenges when applied to open-
ended, dynamic household settings. Our work, instead,
embraces flexible, dynamic task planning with in-context
learning like shown in [25]. The approaches named, while
effective for short-horizon tasks, do not track object positions
over time. For long-horizon tasks that involve real-world
dynamic conditions, a combination of task planning and a
memory mechanism is required.

B. Memory and Knowledge Base

Long-horizon tasks require robust memory mechanisms.
While LLM context windows keep expanding [23], using
excessively large contexts in robotics is computationally
inefficient. Instead, long-term memory retrieval, accessed
only when needed, is a more viable solution. RAG [8]
provides an efficient mechanism for narrowing context by
querying a vast dataset and retrieving only relevant infor-
mation. Additionally, scene graphs, used in approaches like
SayPlan [16] and DELTA [10], offer structured memory that
improves action verification and contextual reasoning. How-
ever, in unstructured and constantly changing environments,
maintaining these graphs becomes challenging due to the
need for complex automatic mechanisms or manual curation.
Our work explores the feasibility of a lightweight, fully

natural language-driven approach using RAG as a memory
mechanism. Inspired by ReMEmbR [1], our system incorpo-
rates temporal elements into the retrieval process, ensuring

the robot tracks long-term changes in its environment. While
using language-based memory retrieval introduces potential
for increased errors compared to structured models like scene
graphs, we aim to evaluate how well purely language-based
memory retrieval performs in practical, dynamic household
scenarios. This approach offers flexibility, adaptability, and
reduces the need for explicit world modelling, making it
more suitable for real-world applications.

III. METHODOLOGY

Fig. 2: The full pipeline, integrating long-horizon task plan-
ning. Newly introduced components are highlighted in blue.

Our system, coordinated by an agent-orchestration frame-
work, combines task planning with RAG [8]. This chapter
explains the individual components and their interaction.
Fig. 2 illustrates the overall pipeline. The focus of this

work is the agent-orchestration system, which processes
object detection and user requests to create a robot task plan.
In the system, each agent uses an LLM with a specialized
role. The task planning agent additionally is prompted with
a chain-of-thought technique [26].

Fig. 3: The agent-orchestration architecture

The system architecture of the agent orchestrator, illus-
trated in Fig. 3, consists of:
1) A routing agent, responsible for analyzing incoming

user requests.
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2) A task planning agent, handling commands that
require the robot to perform actions.

3) A knowledge base agent, processing follow-up ques-
tions about previously handled objects.

When a user request arrives, the routing agent first
analyzes it to determine its nature. The request is then
categorized into one of three types:

1) Action command: If the robot is asked to perform an
action, it is forwarded to the task planning agent.

2) Query about history: If it concerns previously han-
dled objects, it is directed to the knowledge base agent.

3) Unclear request: If the request doesn’t fit either
category, clarification is requested before proceeding.

A. Task Planning Agent

The task planning agent receives frequent environmental
updates via camera perception, encoded as a list of single
objects. Grounded SAM [17] enables text-driven object de-
tection and segmentation for the pipeline, while Vision Lan-
guage Models (VLMs) generate natural language descrip-
tions of the environment. Although VLMs alone can extract
the object list for the LLM, Grounded SAM is essential for
precise segmentation, which is critical for grasping tasks.
Using the object list, the LLM processes the user request
– which can be both expressed in high-level or low-level
terms – and formulates tasks that best fulfill the command.
The generated answer has to include a JSON string for an
action following this structure:
1) Objects involved in the task.
2) The destination for placement tasks.
After the action is determined, the grasping process is

initiated. We use the segmentation from Grounded SAM and
the camera intrinsics to crop the depth image and project
the depth crop to a 3D pointcloud of the respective object.
To estimate a grasp approach vector, we feed the cropped
object point cloud to Control-GraspNet [22], a pre-trained
grasp estimator.

B. Knowledge Base Agent

Fig. 4: RAG workflow for long-term question answering:
Relevant past actions are retrieved from dialogue history, and
the LLM generates responses based on the retrieved context.

The knowledge base agent is used for user inquiries
regarding past robot actions, such as object locations or

task completion status. These queries require access to long-
term memory, for which RAG has proven most effective, as
discussed in Section II. Fig 4 illustrates the RAG workflow,
comprising two key steps:
1) Document Ingestion: Input data, such as conversation

history, is preprocessed, split into smaller chunks (each
representing a question-answer pair), and converted
into high-dimensional vectors using an embedding
model. These embeddings are then stored in a vector
database for efficient retrieval.

2) User Query, Retrieval, and Response Generation:
User queries are embedded using the same model and
are matched against the stored vectors to retrieve the
most relevant context. This context is then provided to
the LLM, which generates a response tailored to the
user’s query.

To enable chronological reasoning, essential for tracking
object movements over time, we augment RAG with a time
stamp for each question-answer pair.

IV. EXPERIMENTS

To evaluate our system, we conduct experiments address-
ing the three key challenges from Chapter I: (1) flexible
task planning in dynamic household environments, (2) long-
term memory usage, and (3) modular agent coordination.
Specifically, we assess the system’s ability to create grounded
task plans, answer questions based on prior interactions, and
route tasks to the appropriate agent.

A. Experimental Setup

This study evaluates an agent-orchestration system for
symbolic task planning and follow-up questions via a knowl-
edge base. To ensure a thorough evaluation, we consider
three distinct phases:
1) Task Planning Performance – The symbolic task

planning output is assessed independently, measuring
accuracy of object assignment to their destinations.

2) Knowledge Base Reliability – The system’s ability to
reason about past actions (with and without RAG) is
tested by asking about the system’s current status, such
as locations of previously moved items.

3) Routing Reliability – Measures the accuracy of the
routing agent in directing queries to the appropriate
agent (Task Planning, History, or itself).

To isolate the performance of the specialized agents, agent
handoff is not considered in the evaluation of 1) and 2).

B. Algorithmic Framework

The frameworks and models used are shown in gray
in Fig. 4. To enable efficient collaboration among agents,
we use OpenAI Swarm [12], a lightweight framework for
agent orchestration and task delegation. We evaluate the
performance of Qwen2.5-32b [15], Gemma2-27b [23], and
LLaMa3.1-8b [4], selected for their open-source availability
and ability to run locally on 16GB GPU RAM. For RAG,
we employ ChromaDB [3], a vector database optimized for
fast lookups, combined with the embedding model BGE-M3.
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C. Task Scenarios

Fig. 5: The artificial household environment used in the
experiment.

The experiment is conducted in an artificial household
environment, where objects must be assigned to correct
destinations based on high-level commands. To evaluate
task planning, we define three scenarios (see Fig. 6) that
share five predefined placement locations, while each uses a
different cleanup zone. Fig. 5 shows a visual representation
of the environment. These locations reflect common-sense
knowledge typically understood by LLMs. To ensure clarity,
the agent receives explicit definitions for each destination:

• Sink – For items that need washing.
• Trash Can – For disposable or inedible items.
• Fridge – For perishable food.
• Food Shelf – For non-perishable food items.
• Storage Box – For general storage.

Fig. 6 shows the object list extracted from a captured
image of each task scenario using LLaMa3.2-Vision along
with the user queries and the segmentation results from
Grounded SAM.
After execution of all scenarios, the knowledge base agent

is asked four distinct folow-up questions targeting different
aspects of retrieval and reasoning:

• Error Detection: ”Where is the jacket that was in the
living room? I thought you put it in the storage box, but
I can’t find it there.”

• Hallucination: ”Where did you put the laptop? It’s not
on the desk anymore.”

• Food Availability: ”I am hungry. Is there any food left
from earlier?”

• Trash Status: ”How many objects are in the trash can?”
To better reflect real-world applications, we extend the

conversation dialogue with additional question-answer pairs
containing actions. Furthermore, deliberate errors are intro-
duced into the task plans, where the agent provides the
user a different location than the one forwarded to the state
machine. This allows us to evaluate how well the knowledge
base handles inaccuracies. Beyond evaluating the specialized
agents in isolated setups, we assess how effectively the
routing agent delegates tasks to the appropriate specialized
agent. Specifically, we test:

• Task Planning Queries: The three high-level com-
mands from the task planning scenarios (see Fig. 6) and
an additional low-level request (”Can I have a banana?”)

• Knowledge Base Queries: The four follow-up ques-
tions from the knowledge base scenario.

D. Evaluation Methodology

The evaluation of the agent-orchestration system’s compo-
nents is based on the task scenarios and follow-up questions
defined in Section IV-C. Task planning performance is evalu-
ated by testing each model on the three task scenarios, with
each scenario executed five times per model. Accuracy is
measured at the object level as the percentage of correctly
assigned tasks. A task is deemed correct if it satisfies the
following criteria:

• Valid JSON format
• Correct destination assignment
• Stationary Object Exclusion (ensuring no task is
assigned to items that should remain in place)

The final accuracy score represents the percentage of objects
for which tasks were correctly assigned, including the im-
plicit ”no task” assignment for stationary objects (e.g., table).
The knowledge base is evaluated using four follow-up

questions, each tested five times per model. Unlike the
task planning agent, the knowledge base agent does not
require a strict output format. It is assessed based on factual
correctness, measured as the percentage of correct answers.
For queries expecting multiple objects as an answer (e.g.,
”Which objects are in the trash?”), accuracy is based on the
percentage of correctly identified objects.
The routing agent’s ability to correctly assign tasks is eval-

uated by processing queries from the task planning scenarios
and history-based questions, along with one additional query,
five times per model. The final metric is quantified as the
percentage of correctly assigned tasks. Gemma2, which does
not support tool calling, is excluded from this test.

V. RESULTS AND DISCUSSION

This section presents the experimental results for task
planning, knowledge base and agent routing.

A. Task Planning

We introduce a lenient evaluation metric (cf. Table I),
where reasonable alternative placements based on user pref-
erences are counted as correct. The strictly correct place-
ments, following the intended plan as prompted to the LLM,
are presented under the strict metric in Table I.
Table I shows that Qwen consistently outperforms the

other models in nearly all scenarios. LLaMA performs no-
tably worse in the living room scenario, with the lowest strict
accuracy (40.0%). Gemma2 falls between the two, showing
higher accuracy than LLaMA but lower than Qwen.

B. Knowledge Base

The integration of RAG notably enhances the accuracy
of the knowledge base’s responses, even in medium-term
interactions consisting of 21 question-answer pairs with ap-
proximately 4000 tokens. Qwen achieves the highest validity
(91.3%) with RAG (cf. Table II), highlighting the potential of
retrieval-augmented approaches for maintaining consistency
over longer interactions.
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(a) Scenario 1: Dining Table Cleanup
Object list from VLM: Plate, Fork, Spoon,
Salt shaker, Glass, Frying pan, Spatula, Chair,
Table top, Pepper grinder. Command: I just
finished dinner, please clear the dining table.

(b) Scenario 2: Living Room Cleanup
Object list from VLM: A table, A couch,
A brush, Scissors, Pen, Book, Salt packet,
Jacket, Markers. Command: Please hand
me the brush and tidy up the rest of the
living room.

(c) Scenario 3: Desk Organization
Object list from VLM: Desk, Computer Mon-
itor, Laptop, Mouse, Plate, Crumbs, Lemon,
Cup, Glass of water, Bag of chips, Piece of
paper, Potted plant, Cord, Wooden desk, White
wall. Command: Please clear my desk, leav-
ing only the essentials for work.

Fig. 6: The three scenarios used for task planning. For each scenario we have extracted an object list using the Vision-
Language Model LLaMa3.2-Vision. This list is used as input for Grounded SAM [17] to perform segmentation.

Model Dining Table Living Room Desk Organization Total Accuracy (%)
Strict (%) Lenient (%) Strict (%) Lenient (%) Strict (%) Lenient (%) Strict (%) Lenient (%)

LLaMa3.1-8B 68.0 78.0 40.0 40.0 61.3 65.3 56.4 61.1
Gemma2-27B 58.0 68.0 68.9 68.9 68.0 69.3 65.0 68.7
Qwen2.5-32B 64.0 80.0 88.9 88.9 78.7 84.0 77.2 84.3

TABLE I: Task Planning Accuracy Across Different LLMs. Strict (%): Percentage of objects correctly placed according
to the intended plan. Lenient (%): Percentage of objects placed differently than expected, but with reasonable alternative
placements based on user preferences.

Method Model Response Validity (%) Total Validity (%)
Err. Detection Hallucination Food Avail. Trash Status

Without RAG (Ablation Study)
LLaMa3.1-8B 20.0 80.0 70.0 65.0 58.8
Gemma2-27B 0.0 80.0 10.0 60.0 37.5
Qwen2.5-32B 0.0 80.0 60.0 75.0 53.75

With RAG
LLaMa3.1-8B 40.0 100.0 90.0 55.0 71.25
Gemma2-27B 80.0 100.0 40.0 60.0 70.0
Qwen2.5-32B 100.0 100.0 90.0 75.0 91.3

TABLE II: Knowledge Base Response Accuracy Across Different LLMs. Used Embedding Model for RAG: BGE-M3.
No. of question-answer pairs retrieved by RAG: 5

C. Agent Routing

In task delegation, LLaMA exhibits the highest routing
accuracy (92.5%), despite its weaker reasoning abilities (cf.
Table III). Its structured approach to tool-calling ensures
stable performance. In contrast, Qwen, while superior in
contextual understanding, occasionally produces incorrect
structured outputs, leading to execution failures.

D. Summary

Our findings highlight the potential of lightweight, open-
source LLMs for memory-augmented long-horizon task plan-
ning. A combination of LLaMA (routing) and Qwen (special-
ized agents) achieves the best balance between structured

execution and high-level reasoning.
Evaluating task execution remains challenging due to

subjective human preferences, emphasizing the need for user
studies. Furthermore, integrating Vision-Language Models
(VLMs) into the agent orchestrator – rather than only using
them for object lists – could enhance robustness. Embedding
contextual information into the latent space reduces com-
mand dependency and improves autonomy.
RAG improves factual consistency in knowledge retrieval

but struggles with repeated object interactions and long his-
tories, making full-history queries impractical. Scene graphs,
as proposed by Liu et al. [10], present a promising alternative
for efficient and robust knowledge integration.
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Model Task Planning Queries (%) Knowledge Base Queries (%) Total Success Rate (%)
LLaMa3.1-8B 85.0 100.0 92.5
Qwen2.5-32B 95.0 85.0 90.0

TABLE III: Routing Success Rate Across Different LLMs

While task delegation via the routing agent was mostly
successful, certain models occasionally produced invalid
structured outputs, leading to execution failures. To increase
robustness, future work should explore schema validation and
adaptive retry mechanisms that can automatically mitigate
such issues.
In summary, open-source LLMs prove viable for long-

horizon task planning. However, addressing key challenges –
refining evaluation metrics, improving long-term robustness,
and integrating multimodal perception – remains essential
for achieving reliable household robotics.

VI. CONCLUSION

This work presents a prototype of an agent-orchestration
system for household robots, utilizing local, lightweight
open-source LLMs to translate high-level user commands
into structured task plans for tidy-up scenarios. Memory-
augmented task planning enables follow-up queries about
past actions, improving user interaction and assisting in
locating misplaced objects. Our evaluation shows strong task
planning, routing, and knowledge retrieval. with Qwen2.5
excelling in reasoning-heavy tasks and LLaMA3.1 provid-
ing a more efficient routing solution. However, RAG-based
retrieval for general tasks remains a challenge, particularly
for implicit queries where relevant information is not always
found. Addressing these limitations is key to improving long-
term reasoning and knowledge access.
Future work will focus on robust storage solutions, im-

proved knowledge representations, broader user studies with
structured datasets for evaluating and benchmarking existing
approaches. Enhancing communication and tool usage in
agent-orchestration will be crucial for greater adaptability
and autonomy in household robotics.
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