
D
ra

ft

Low-Cost Open-Source Real-Time Communication in Industrial IoT:
Using the Raspberry Pi 5 with OPC UA over TSN*

Jonathan Lukas Mandl1, Olaf Saßnick2, and Thomas Rosenstatter3

Abstract— Industry 4.0 demands optimized industrial process
control and enhanced data permeability, necessitating more
capable edge-level hardware. While personal computers with
real-time Linux operating systems offer ample computing power
at low cost, they suffer from limitations in low-level connectivity,
standardized compact form factors, and uncertain long-term
supplies. This paper explores the Raspberry Pi 5 as a viable
alternative, highlighting its excellent low-level connectivity,
compact form factor, and guaranteed long-term availability
until 2036.

This study investigates the Raspberry Pi 5’s performance
in real-time communication scenarios using Open Platform
Communications Unified Architecture (OPC UA) over Time-
Sensitive Networking (TSN), a critical requirement for indus-
trial applications. By outlining necessary modifications to the
Raspberry Pi 5 and its Linux kernel, we enable real-time com-
munication via TSN. Performance measurements in an OPC
UA PubSub scenario are then compared with industrial PCs,
highlighting the Raspberry Pi 5’s potential as an alternative
edge device.

Index Terms— Industry 4.0, industrial communication, time-
sensitive networking, commodity hardware

I. INTRODUCTION

The rising need for optimized industrial process control
and data permeability driven by the Industry 4.0 initiative
necessitates more capable hardware at the edge-level. While
personal computers with real-time Linux operating systems
could provide plenty of computing power at a low cost,
they come with downsides, namely: (i) a lack of low-level
connectivity, (ii) limited options for standardized compact
form factors, and (iii) uncertain long-term supplies.

Connectivity. Basic interfaces are missing to interface
sensors, such as RS485, One-Wire, and also General-Purpose
Input/Output (GPIO). One can resort to USB adapters,
which, however, contribute to latency and introduce new
sources of failure.

Form factor. The smallest widespread standardized form
factor, Mini-ITX, still occupies a considerable amount of
space and is therefore unsuitable for numerous applications.

Long-term supplies. Although personal computers are
readily available, new generations are typically introduced

*The industrial computers used in this work were provided by the Open
Source Automation Development Lab (OSADL) eG.

1Jonathan Lukas Mandl is a master student in Industrial Informat-
ics & Robotics at the Salzburg University of Applied Sciences, AT,
jmandl.iirb-m2024@fh-salzburg.ac.at

2Olaf Saßnick is with Josef Ressel Centre for Intelligent and Se-
cure Industrial Automation, Salzburg University of Applied Sciences, AT,
olaf.sassnick@fh-salzburg.ac.at

3Thomas Rosenstatter is with Josef Ressel Centre for Intelligent and
Secure Industrial Automation, Salzburg University of Applied Sciences, AT,
thomas.rosenstatter@fh-salzburg.ac.at

every 1-2 years, phasing out the previous models. Addi-
tionally, unannounced hardware revisions can significantly
impact usability in industrial systems. Once a model has been
thoroughly tested, it is undesirable to change and retest it.

Motivation. Considering all three options, the Raspberry
Pi 5 is a viable alternative. It offers excellent low-level
connectivity in a compact form factor and guarantees long-
term supplies, as it will remain in production until 2036.
Additionally, the Compute Module 5 [12], which features a
high-density perpendicular connector, uses the same hard-
ware. This module simplifies the hardware design process
for custom solutions, allowing for a 2-layer printed circuit
board. Since the NIC and processor are identical, all findings
in this work are applicable to the Compute Module 5.

The Raspberry Pi 5 presents a strong candidate, given the
benefits mentioned earlier. Especially in resource-constrained
environments like mobile robotics, where the form factor and
energy efficiency are crucial, this system could prove highly
beneficial. However, it is essential to evaluate its performance
in real-time communication scenarios, as this is a critical
requirement for industrial applications.

Contribution. In this paper we investigate two research
questions (RQs) focusing on the Raspberry Pi 5’s perfor-
mance with OPC UA Time-Sensitive Networking (TSN) and
further compare it to industrial PCs.
• RQ1. How does the Raspberry Pi 5 perform in real-time

communication tasks using OPC UA over TSN?
• RQ2. How does the Raspberry Pi 5’s performance as a

real-time OPC UA node compare to industrial PCs?
By addressing the above-mentioned research questions, we

first outline the necessary modifications to the Raspberry Pi 5
and its Linux kernel. These modifications enable real-time
communication via TSN. After setting up the Raspberry Pi 5
devices, we measure their performance in a OPC UA PubSub
scenario (RQ1). We compare this performance with industrial
PCs, which serve as a baseline. This comparison highlights
the Pi 5’s potential as an alternative edge device (RQ2).

II. BACKGROUND

A. Raspberry Pi 5 Hardware

The Raspberry Pi 5, hereafter referred to as the Pi 5, is
a single-board computer from the Raspberry Pi Foundation.
The term single-board computer describes the hardware, as
it is integrated onto a single circuit board. Compared to its
predecessor, the Pi 4, the Raspberry Pi Foundation reports a
two to threefold increase in performance. Furthermore, the

Proceedings of the Austrian Robotics Workshop 2025

https://doi.org/10.34749/3061-0710.2025.10 61
Creative Commons Attribution
4.0 International License

D
ra

ft

cache layout is improved on the Pi 5. L3 cache is added
and the L2 cache is changed from shared to per-core cache.
This helps with the isolation of CPU cores and their caches,
improving timing determinism in real-time systems [15].

For this work, the Ethernet peripherals are more critical
than the chosen processor. The Pi 5 features, in comparison
to its predecessor, utilizes an in-house developed south bridge
that connects the Ethernet MAC peripherals via PCI-E. This
setup includes the Cadence Gigabit Ethernet MAC design
of type GEM GXL 1p09, which supports IEEE 1588 for
precise time synchronization, a standard used in Precision
Time Protocols (PTPs) applications. This design allows for
time-stamping of packets, which is crucial for applications
requiring synchronized timing, such as industrial automation
and real-time communication systems [14].

B. Precision Time Protocol

The PTP protocol enables precise synchronization of the
clocks of multiple devices in the same network. It uses a mas-
ter slave topology to determine the exact travel delay between
two devices which is then used to synchronize the slave clock
to the master clock. Due to the fundamental properties of the
protocol, hardware support from the Ethernet MAC is needed
for precise synchronization. In this case the Ethernet MAC
uses an internal clock inside the Network Interface Card
(NIC) to timestamp incoming and outgoing packets. While
software timestamping happens inside the Linux kernel and
therefore adds operating system latencies. The Linux imple-
mentation uses two services: ptp4l is used for performing
the PTP protocol, phc2sys synchronizes the system clock
to the PTP hardware clock used for timestamping [5].

C. Time-Sensitive Networking

Time-Sensitive Networking is a series of standards that
add to the Ethernet standard to improve the real-time perfor-
mance of Ethernet. It mainly addresses two important fea-
tures needed for real-time applications: time synchronization
and traffic shaping [2].

Time synchronization and more specifically PTP, synchro-
nizes the clocks of the nodes in a TSN network. Clock
synchronization is needed to ensure that time driven com-
munication can be correctly performed. Shaping algorithms
also depend on a common and accurate time.

This work focuses solely on the time synchronization part
of the TSN standard. Shaping is largely dependent on the
implementing software. In the experimental setup there are
only two TSN capable devices and no additional non-real-
time traffic which would make shaping necessary.

D. PREEMPT RT-patched Linux kernel

The experiments in this work were done on the version
6.6.23 and 6.6.78 of the Linux kernel and therefore needed
the PREEMPT RT patches for real-time support. The patches
6.6.23-rt28 and 6.6.78-rt51 were used. Even though dynamic
preemption in the Linux kernel reduces the latency of tasks
a lot, full preemption is needed to minimize latency and
improve consistency of process wake up times. The patch

achieves this mostly by removing or altering non preemptable
kernel code. Another significant change is the adoption of
threaded interrupt handling, which allows higher priority
interrupts to interrupt lower priority interrupt handlers.

Without threaded interrupt handlers the latency of network
interrupts would be less predictable and generally higher.
The real-time performance of the patched Linux kernel was
tested with the cyclictest utility and a synthetic system
load. The cyclictest utility from the rt-tests package uses
clock nanosleep to suspend a measuring thread. By
calculating the deviation from the expected wake-up time,
the utility calculates the systems latencies [19]. Furthermore,
the load generating tool stress was used for synthetic CPU
and memory load. This load ensures that the Linux kernel
has to be preempted during the test [18].

E. Open Platform Communications Unified Architecture

OPC UA represents an evolution of the OPC standard
which consolidates the previous OPC Classic specifications
into a platform-independent framework. OPC UA is a data
exchange standard that supports a variety of functions,
including data transfer, method calls, and other capabili-
ties. The OPC Foundation describes its primary use case
as enabling communication from machine-to-machine and
machine-to-enterprise, as well as bridging the two. A key
feature is its ability to semantically describe data and or-
ganize it within complex, object-oriented structures. While
OPC UA offers a wide range of functionalities, this paper
focuses on its role as a foundation for data transfer.

Furthermore, the OPC UA application used in this work
leverages the PubSub mechanism to transfer data between
nodes. The code is provided by Pfrommer et al. [10] and is
available in the open62541 library until version 1.4

III. RELATED WORK

The Open Source Automation Development Lab eG (OS-
ADL) is a laboratory dedicated to providing open-source
software solutions for industrial systems. They have projects
focused on real-time networking with various protocols,
including OPC UA PubSub over TSN. In contrast to this
paper, their research focuses on the feasibility of open-source
software in industrial applications. Measurements from their
project [7] can be compared with the results presented in this
paper.

The work by Ulbricht et al. [17] describes TSN-FlexTest, a
flexible testbed for TSN measurements. This testbed utilizes
commodity off-the-shelf hardware and focuses on the TSN
communication itself. They also use the same NIC (Intel
I210) as the computers for our baseline comparison.

While other studies have utilized the Raspberry Pi in
industrial settings using OPC UA, they do not focus on OPC
UA over TSN (e.g., [6], [4]). An exception is the work by
Reddy et al. [16], who employ a Raspberry Pi 3 only as a
subscriber in a TSN network, although they do not provide
performance details.

We have not found any comparable research investigating
the potential of the Pi 5 computer respectively the Compute

Proceedings of the Austrian Robotics Workshop 2025

https://doi.org/10.34749/3061-0710.2025.10 62
Creative Commons Attribution
4.0 International License

D
ra

ft

OPC UA
PubSub node 1 & PTP master

OPC UA
PubSub node 2

Network/Uplink

Tap

Network Tap

Fig. 1. Network topology of the experiment setup.

Module 5 as a replacement for industrial computers in real-
time networking using TSN.

IV. EXPERIMENT SETUP

The setup comprises two Pi 5 computers, a consumer
grade network switch and a network tap. A dedicated net-
work tap is utilized to measure and improve the accuracy
of packet timestamps as well as to include jitter of hardware
latencies of the computers used. The Pi 5 computers are con-
figured as OPC UA PubSub nodes. Both act as a subscriber
and a publisher as presented in the TSN example program1

in the open62541 library (until Version 1.4) [10]. Moreover,
for clock synchronization between the two TSN nodes, one
of the OPC UA PubSub nodes acts as a PTP master for the
other node.

A. Hardware Details

In addition to this setup, two industrial PCs are used for
baseline measurements. These PCs are equipped with Intel
i210 NICs, which support optimization for TSN networks.
The two primary settings for tuning are: defining a launch
time for packets (SO TXTIME) and use of multiple hardware
queues for different priority packets. Additionally, in the
baseline measurements, one industry PC was also used as the
PTP master. This was done in order to remove all Pi 5 out of
the tests and should not change the outcome. This difference
also highlights that the industrial PCs can operate at very
short cycle times with low jitter, as shown in Section V.

It should be noted that the used layer 2 switch does
not support all features of the TSN specification. But this
reinforces the purpose of this paper to use commodity off-
the-shelf hardware for evaluating the performance of real-
time networking. Figure 1 illustrates the testing setup. The
illustrated OPC-UA nodes are the Pi 5 computers respec-
tively the industrial PCs.

Following is a list of the hardware used in the test setup:
• ProfiShark 1G network tap
• TP-Link TL-SG105E 5 port unmanaged switch
• Raspberry Pi 5 with 4GB memory

For baseline testing with industrial PCs instead of the Pi 5
computers:

1https://github.com/open62541/open62541/tree/v1.3.10/examples/pubsub
realtime (2025-02-06)

Node 1

OPC UA
PubSub

Application

TX
tcpdump

Node 2

OPC UA
Loopback

Application

RX
tcpdump

T1

T2

T4

T3

T8

T7

T5

T6

Network TapT2N

User
Space

Kernel
Space

Physical

Fig. 2. Overview of the test points used for logging processing times,
based on [10], with the addition of T2N, provided via a network tap.

• Schubert Prime Box Pico with Intel Atom Processor
E3950 and two Intel i210 NICs

B. System Modifications to Pi 5

To further improve the real-time networking performance
on the Pi 5 several modifications were applied to the system.
• Deactivating Energy-Efficient Ethernet: The Energy-

Efficient-Ethernet protocol can be deactivated via an
entry in the boot configuration, which means that the
network card can no longer switch to an energy-saving
mode when there is no network traffic. This energy-
saving mode can result in added latencies because of
the wake-up time of the NIC [13].

• Ethernet coalescence: Even though the Ethernet MAC
on the Pi 5 does not support all features which could
improve performance for real-time networking, some
settings are available. rx-usecs and tx-usecs are
available settings. Both settings should be lowered to
reduce the amount of microseconds the Ethernet NIC
waits until triggering an interrupt for packet processing
in the kernel. A value of 0 leads to instant interrupts, but
also generates an interrupt for every incoming packet. In
this experiment the value was set to 0 microseconds to
improve real-time networking performance. As a trade-
off, more interrupts are generated, which lead to more
interrupt handlers and more CPU load.

• Isolating CPU cores: By default the Linux kernel dis-
tributes processes across all CPU cores. This behavior
is unwanted in real-time systems, because processes
should have dedicated CPU cores that should not be
shared with other processes. To isolate the cores, the
isolcpus kernel command line argument can be used.
To further leverage the now single process CPU cores,
the scheduler is set to be tick-free on the specified cores
with nohz full. This setting in turn also offloads all
Read-Copy-Update (RCU) callbacks to other cores [1].

V. RESULTS

For performance analysis, two types of measurements
are evaluated: network capture from the network tap and

Proceedings of the Austrian Robotics Workshop 2025

https://doi.org/10.34749/3061-0710.2025.10 63
Creative Commons Attribution
4.0 International License

D
ra

ft

0 5 10 15 20
Inter-arrival Jitter in µs

0

200000

400000

600000

N
um

be
r

of
sa

m
pl

es

m
ax

Fig. 3. Jitter on test point T1 with 1 ms cycle time on the Raspberry Pi 5.

0 5 10 15 20
Inter-arrival Jitter in µs

0

200000

400000

600000

N
um

be
r

of
sa

m
pl

es

m
ax

Fig. 4. Jitter on test point T1 with 250 µs cycle time on the Raspberry Pi
5.

measurements from test points inside the application (see
Figure 2).

The main difference between these two is, that the for-
mer includes latencies from the Linux kernel and Ethernet
hardware. Therefore, the latter can be used to measure the
real-time performance of a specific Linux kernel on the
device and to indicate at which cycle times the OPC UA
PubSub Protocol over TSN can be used. Even though they
are different measurements and should be treated as such,
the main performance indicator is shared. Jitter of the cycle
time indicates irregular and unpredictable latencies in both
measurement methods. Theoretically, latencies in the Linux
kernel and Ethernet stack should add onto the processing
and process wake-up latencies from within the application.
But features in the Linux kernel implemented for better
real-time networking capabilities, such as traffic control and
the aforementioned SO TXTIME allow for compensation
and better handling of latencies. Therefore, results from the
industrial PCs can have a different relation between the two
measurement methods.

In the TSN example taken from the open62541 library are
multiple test points which can be used to log the exact time
a packet is processed. Figure 2 provides an overview of the
location of these test points.

The differences at the transmission points can be explained
by differences in the operating system and processor as well
as hardware architecture. Due to the different processor
architecture, the operating system could not directly be
duplicated from the Pi 5 to the industrial PCs. Adding onto
the difference in processor architecture is that the Linux
kernel version differs between the two systems, because the
Linux kernel specifically adapted for the Pi 5 was used.

The jitter as defined in [11] is the variation in forwarding

0 250 500 750 1000 1250 1500 1750 2000
Frequency in Hz

0.0

0.5

1.0

Po
w

er

×108

Fig. 5. Frequency spectrum of jitter on test point T1 for 250 µs cycle time
on the Raspberry Pi 5.

0 5 10 15 20 25
Inter-arrival Jitter in µs

0

100000

200000

N
um

be
r

of
sa

m
pl

es

m
ax

Fig. 6. Jitter of the network packets on test point T2N with 250 µs cycle
time on the Raspberry Pi 5.

delay between consecutive packets

J = |Di−Di−1|, (1)

where Di is the forwarding delay of a given packet. Given
only the absolute timestamps of packet transmission in our
setup, it is not possible to calculate the forwarding delay. As
an alternative, the jitter is calculated based on the variation
of the difference in timestamps via

J = |(Ti+1−Ti)− (Ti−Ti−1)|, (2)

where Ti is the absolute timestamp of a given packet. The
calculation of jitter outside the application logging is not
trivial due to the network tap not being synchronized with
PTP. The clock drift of the recorded network tap timestamps
is corrected to allow for a meaningful comparison with
PTP synchronized timestamps. A linear clock drift can be
corrected by computing a scaling factor

s =
Tc

1
n ∑n

i=1(Ti−Ti−1)
, (3)

where Tc is the configured cycle time. This scaling factor is
then used to adjust each non-synchronized timestamp. The
remaining non-linear clock drift cannot be compensated
without compromising the integrity of the results. However,
due to the short recording duration, the non-linear clock
drift per packet is assumed to be negligible.

The results in Figures 3 and 4 show that the jitter is very
similar between the cycle time of 1 ms and 250 µs.

To further analyze unwanted cyclic jitter sources in the
system the frequency spectrum of the jitter on point T1
was calculated as shown in Figure 5. From the frequency
spectrum it is clear that the only cyclic jitter source are the
Linux kernel timer interrupts, which were configured to 1kHz

Proceedings of the Austrian Robotics Workshop 2025

https://doi.org/10.34749/3061-0710.2025.10 64
Creative Commons Attribution
4.0 International License

D
ra

ft

0 10 20 30 40 50 60 70
Inter-arrival Jitter in µs

0

100000

200000

300000

N
um

be
r

of
sa

m
pl

es

m
ax

Fig. 7. Jitter on measuring point on test point T1 with 250 µs cycle time
on the industrial PC.

0 250 500 750 1000 1250 1500 1750 2000
Frequency in Hz

0

5

Po
w

er

×108

Fig. 8. Frequency spectrum of jitter on test point T1 for 250 µs cycle time
on the industrial PC.

on both systems. This behavior is expected, and the added
latencies cannot be completely removed, only mitigated (see
Section IV).

After measuring the performance of the real-time Linux
kernel on the Pi 5 the behavior is expected and maximum jit-
ter values do not exceed 22.02 µs with 250 µs cycle time. To
establish a baseline the same measurements were conducted
on the industrial PCs.

In Figure 7 it can be seen that the industrial PCs produce
higher maximum jitter values than the Pi 5s. While testing
the real-time kernel this behavior has also been observed,
which indicates further that the jitter on measuring point
T1 closely represents the jitter of thread wake up times.
As already mentioned there is a change in processor archi-
tecture and hardware topology including but not limited to
changes in cache layout between both systems [15]. These
changes can have a big impact on real-time performance.
Furthermore, Figure 8 shows that there is a low frequency
jitter source visible, but the dominant frequency is still
caused by Linux kernel timer interrupts. The low frequency
jitter sources may be the System management interrupt
(SMI) of Intel processors, which cause unavoidable latencies
in the system. Using the hwlatdetect-utility (from the
rt-tests package) the SMI interrupts were measured to
cause 12 µs of latency with a frequency of 1 Hz [19].

It has to be noted that the minimum cycle time successfully
used was 250 µs, lower cycle times lead to crashes in the
application on both systems. Therefore, this does not indicate
that lower cycle times are not possible on the exact hardware
used.

To further compare the performance to the industrial PCs,
the network capture is analyzed. As previously mentioned,
the network tap adds accurate timestamps to incoming pack-
ets to prevent inaccurate timestamps from the computer

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Inter-arrival Jitter in µs

0

250000

500000

750000

N
um

be
r

of
sa

m
pl

es

m
ax

Fig. 9. Jitter of the network packets on test point T2N with 250 µs cycle
time on the industrial PCs.

TABLE I
SUMMARY OF THE MEASURED JITTER DISTRIBUTIONS ACROSS

DIFFERENT TEST POINTS AND HARDWARE CONFIGURATIONS.

Device Test Rate Median 25% 75% 99% Max
Point (µs) (µs) (µs) (µs) (µs) (µs)

RPi5 T1 250 0.075 0.037 0.166 0.610 22.016
RPi5 T1 1000 0.055 0.019 0.093 1.592 19.980
IPC T1 250 0.466 0.213 0.810 2.158 67.140
RPi5 T2N 250 0.512 0.208 0.792 1.416 27.719
IPC T2N 250 0.000 0.000 0.008 0.288 3.376

running the recording software. This does mean that the
network tap is not synchronized to the clock of the PTP
master. Therefore, the non-linear clock drift between the two
clocks cannot be deducted from the packet timestamps. It is
also not possible to calculate the absolute jitter of a packet
from T1 to the network due to the missing common time.
The jitter values in the following plots are calculated from the
difference between two timestamps, which mostly removes
clock drift from the results.

As Figures 6 and 9 illustrate, there is a significant differ-
ence in jitter between the two systems when comparing jitter
of the network packets. The Pi 5 procures similar jitter values
on the network as on measuring point T1. In contrast, the
industrial PC is able to reduce the maxmium jitter of network
packets down to 3.38 µs. This reduction in jitter can solely
be contributed to the SO TXTIME feature of the Intel i210
NIC.

VI. DISCUSSION AND FUTURE WORK

The results clearly show that industrial PCs have better
real-time networking performance than the Pi 5, which was
expected. The main reason is the Intel I210 NIC, which can
be fine-tuned for a specific network topology and traffic to
achieve better timing. Note that this finding only applies to
the industrial PCs used in this experiment as there are various
configurations with different NICs. The identified required
features are available in Intel I210 and similar featured
NICs [3].

The Pi 5, on the other hand, does not use an equally
featured NIC and therefore offers reduced performance in
this application. It has to be decided on a case-by-case basis
whether this system is sufficient. For software based real-
time networking the jitter can be compared to different test-
ing setups including Ethercat and Powerlink from OSADL.
These tests are available at [8] and [9]. At the time of writing

Proceedings of the Austrian Robotics Workshop 2025

https://doi.org/10.34749/3061-0710.2025.10 65
Creative Commons Attribution
4.0 International License

D
ra

ft

the maximum jitter of 5 minute intervals over 24 hours on
the Powerlink setup fluctuated from 31 µs down to 12 µs on
a 500 µs cycle time. This setup does not utilize an Intel i210
NIC [9]. If the maximum jitter of network packets on the
Pi 5 does not increase on long-term measurements, the real-
time networking performance of the Pi 5 may suffice for the
task of a software based Powerlink master.

To strengthen our findings, a long-term experiment using
the testing setup described in this paper should be done. Fur-
thermore, an OT device leveraging the real-time networking
capabilities of the Pi 5 needs to be implemented to ensure the
findings also apply outside the testing environment. Such an
environment introduces non-real-time packets and therefore
tests the resiliency possible on the NIC of the Pi 5.

VII. CONCLUSION

In this paper, we investigated the feasibility of using a
Raspberry Pi 5 computer as a replacement of an industrial
computer for real time communication. The Pi 5 computer
was selected for this purpose due to its excellent low-level
connectivity, compact form factor and the guaranteed long-
term availability until 2036.

The findings in regard to the performance of the Pi 5 to
perform real-time communication tasks using OPC UA over
Time-Sensitive Networking (TSN) (RQ1) indicate that the
Pi 5 indeed can be used as an OPC UA Node for real-time
communication using the PubSub mechanism. However, we
have to note that the results of this work are only applicable
to small TSN networks with no additional network traffic
and cross load. Furthermore, the lack of the NIC features
may degrade the real-time networking performance.

The performance analysis of the Pi 5 to an industrial
P (RQ2) showed that the latter using an Intel i210 NIC
improves the jitter behavior of network packets utilizing the
SO TXTIME option. In detail, the maximum jitter of 3.38 µs
is significantly reduced when compared to the maximum
jitter on the Pi 5, which is 27.72 µs. One should also take into
account that, industrial PCs typically offer other advanced
features that enable hardware traffic control for packets with
different priorities, which is important in mixed or large TSN
networks.

Although the Pi 5 does not achieve a comparable result
in packet jitter in the network, it offers other advantages
over industrial PCs. The powerful and efficient single-board
computer provides a vast range of interfaces including GPIO,
Camera Serial Interface and Display Serial Interface. Further-
more, alternative variants like the Compute Module 5 make
custom real-time networking hardware more accessible [14].
Moreover, we showed that the Pi 5 presents a compelling
alternative, facilitating rapid prototyping of applications and
significantly reducing associated costs for laboratory setups
only requiring small-scale networks.

ACKNOWLEDGMENT

The financial support by the Christian Doppler Research
Association, the Austrian Federal Ministry for Digital and
Economic Affairs and the Federal State of Salzburg is
gratefully acknowledged.

REFERENCES

[1] “The Linux kernel documentation,” accessed: 2025-03-04. [Online].
Available: docs.kernel.org

[2] IEEE 802.1 Time-Sensitive Networking Task Group, “Time-sensitive
networking (TSN) task group,” 2024, accessed: 2025-03-04. [Online].
Available: https://1.ieee802.org/tsn/

[3] Intel Corporation, “Intel® Ethernet controller I210 datasheet,”
jan 2021, revision Number: 3.7. [Online]. Avail-
able: https://www.intel.de/content/www/de/de/products/sku/64402/
intel-ethernet-controller-i210it/specifications.html

[4] M. Ladegourdie and J. Kua, “Performance analysis of OPC
UA for industrial interoperability towards industry 4.0,” IoT,
vol. 3, no. 4, pp. 507–525, 2022. [Online]. Available: https:
//www.mdpi.com/2624-831X/3/4/27

[5] Linux PTP Project, “The Linux PTP project,” 2019, accessed:
2025-03-04. [Online]. Available: https://linuxptp.sourceforge.net/

[6] A. Morato, S. Vitturi, F. Tramarin, and A. Cenedese, “Assessment
of different OPC UA implementations for industrial IoT-based mea-
surement applications,” IEEE Transactions on Instrumentation and
Measurement, vol. 70, pp. 1–11, 2021.

[7] Open Source Automation Development Lab OSADL eG,
“OSADL QA farm on real-time of mainline Linux,”
accessed: 2025-03-04. [Online]. Available: https://www.osadl.org/
OSADL-QA-Farm-Real-time.linux-real-time.0.html

[8] ——, “OSADL QA farm on real-time of mainline
Linux: Real-time Ethernet ethercat worst-case round-trip
time monitoring,” accessed: 2025-03-04. [Online]. Avail-
able: https://www.osadl.org/Real-time-Ethernet-Ethercat-worst-case.
qa-farm-rt-ethernet-recording.0.html

[9] ——, “OSADL QA farm on real-time of mainline
Linux: Real-time Ethernet powerlink packet interval and
jitter analysis,” accessed: 2025-05-04. [Online]. Avail-
able: https://www.osadl.org/Real-time-Ethernet-Powerlink-jitter-an.
qa-farm-rt-powerlink-jitter.0.html

[10] J. Pfrommer, A. Ebner, S. Ravikumar, and B. Karunakaran,
“Open source OPC UA PubSub over TSN for realtime industrial
communication,” in 2018 IEEE 23rd International Conference on
Emerging Technologies and Factory Automation (ETFA), vol. 1, Sept.
2018, pp. 1087–1090. [Online]. Available: https://ieeexplore.ieee.org/
document/8502479/

[11] S. Poretsky, S. Erramilli, J. Perser, and S. Khurana, “Terminology
for Benchmarking Network-layer Traffic Control Mechanisms,” RFC
4689, Oct. 2006. [Online]. Available: https://www.rfc-editor.org/info/
rfc4689

[12] Raspberry Pi Ltd, “Raspberry Pi compute module 5 datasheet: A
Raspberry Pi for deeply embedded applications.” 2024, accessed:
2025-03-04. [Online]. Available: https://datasheets.raspberrypi.com/
cm5/cm5-datasheet.pdf

[13] ——, “Raspberry Pi documentation: config.txt,” 2024, accessed:
2025-03-04. [Online]. Available: https://www.raspberrypi.com/
documentation/computers/config txt.html

[14] ——, “Raspberry Pi RP1 peripherals datasheet,” 2024, accessed:
2025-03-04. [Online]. Available: https://datasheets.raspberrypi.com/
rp1/rp1-peripherals.pdf

[15] ——, “Raspberry Pi 5 product brief,” 2025, accessed: 2025-
03-04. [Online]. Available: https://datasheets.raspberrypi.com/rpi5/
raspberry-pi-5-product-brief.pdf

[16] G. P. Reddy, Y. V. P. Kumar, Y. J. Reddy, S. R. Maddireddy, S. Prab-
hudesai, and C. P. Reddy, “OPC UA implementation for industrial
automation - part 2: Integrating PubSub model with TSN,” in 2023 1st
International Conference on Circuits, Power and Intelligent Systems
(CCPIS), 2023, pp. 1–6.

[17] M. Ulbricht, S. Senk, H. K. Nazari, H.-H. Liu, M. Reisslein, G. T.
Nguyen, and F. H. P. Fitzek, “TSN-FlexTest: Flexible TSN measure-
ment testbed,” IEEE Transactions on Network and Service Manage-
ment, vol. 21, no. 2, pp. 1387–1402, 2024.

[18] A. Waterland, “stress(1) - linux man page.” [Online]. Available:
https://linux.die.net/man/1/stress

[19] K. Williams, “rt-tests - suite of real-time tests.” [Online]. Available:
https://web.git.kernel.org/pub/scm/utils/rt-tests

Proceedings of the Austrian Robotics Workshop 2025

https://doi.org/10.34749/3061-0710.2025.10 66
Creative Commons Attribution
4.0 International License

