
D
ra
ft

Sensorized Adaptive Grasping: ROS2 Based Integration of UR3e and
Schunk SVH with Force Sensors

Youssef Aboud1, Andrew Johnson1, Gidugu Lakshmi Srinivas1 and Mathias Brandstötter1

Abstract—Robotic grasping is a critical challenge in automa-
tion, requiring precise control to handle objects of varying
shapes and fragility. While industrial robotic arms offer reliable
motion control, their ability to adapt gripping force dynamically
is often limited. This work addresses the need for force-sensitive
grasping by integrating the Universal Robot UR3e with the
Schunk SVH robotic hand in a ROS2-based framework. The
key innovation lies in a real-time force-controlled grasping
system, where force sensors embedded in the fingers provide
continuous feedback to regulate applied force. The system
operates within a closed-loop control structure, ensuring that
no additional force is applied to the object once the required
force is reached. This prevents deformation or slippage, en-
abling safer and more adaptive handling. The framework was
validated through simulated grasping tasks involving objects
such as a ball, a square block, and an apple. Each task tested the
system’s ability to adjust its grip in response to sensor feedback.
The integration process included configuring ROS2-based com-
munication, developing motion planning using MoveIt2, and
visualizing robot trajectories in RViz. The UR3e trajectories
were tested in Gazebo to simulate grasping interactions before
real-world deployment, ensuring reliable execution. Future
work will focus on enhancing object detection by integrating
computer vision modules into the study. A camera system
automatically identifies and localizes objects, reducing reliance
on predefined grasping positions. This addition will enable
autonomous grasp selection, making robotic manipulation more
adaptive in unstructured environments.

Index Terms—ROS2 robotic manipulation, Schunk SVH,
Universal Robot UR3e, Adaptive force feedback, closed-loop
control system, Sensorised grasping

I. INTRODUCTION

Robotic grasping remains a fundamental challenge in
industrial automation, service robotics, and human-robot
interaction. While robotic arms have achieved high precision
in motion execution, their ability to handle objects with
varying shapes and fragility remains limited. Traditional
position-controlled grasping methods lack adaptability, of-
ten leading to excessive force application or unstable grip
performance [1]. Force-controlled grasping, where tactile
sensors provide real-time feedback, enables robots to interact
safely and effectively with objects [3]. Several industries,
including manufacturing [15], healthcare [17], and logistics
[11], demand robotic systems that can grasp objects without
predefined parameters. Integrating force sensors in robotic
hands enhances adaptability, ensuring secure and precise ma-
nipulation without damaging delicate objects [12]. Existing
research has explored sensor-driven grasping using various

1All authors are with ADMiRE Research Center, Carinthia
University of Applied Science, Villach, Austria {youssef.aboud,
edujohand001}@edu.fh-kaernten.ac.at and
{l.gidugu, m.brandstoetter}@fh-kaernten.at

robotic hands [14], but there is still a gap in seamlessly
integrating force feedback within ROS2-based control archi-
tectures. This work addresses this limitation by developing a
real-time force-controlled grasping system for the Universal
Robots UR3e and Schunk SVH hand, fully integrated within
the ROS2.
Several studies have focused on enhancing robotic

grasping through sensor integration and adaptive control.
Researchers have explored tactile sensor-based grasping,
demonstrating improved grip stability using force sensors
on robotic fingers [16], [6]. The Schunk SVH hand has
been studied for its human-like dexterity [4], but its potential
for adaptive grasping in a ROS2-based environment remains
under-explored. While such five-fingered, highly sensitive
grippers offer impressive manipulation capabilities, they are
not widely adopted in industrial applications due to their
complexity and cost. As a result, their use is still largely
confined to research environments, where more advanced
dexterity and nuanced control are of interest. The Uni-
versal Robots UR3e has been widely used in ROS-based
applications [13], with works focusing on motion planning
using MoveIt2 [7] and real-time execution with RTDE [9].
However, previous studies [18] often rely on position control
rather than force feedback, limiting adaptability. Simulated
environments like Gazebo have proven effective for testing
robotic grasping strategies [8]. Studies integrating ROS and
Gazebo have focused on collision-free grasping and trajec-
tory optimization [10], yet a complete pipeline combining
force sensing, ROS2, and dynamic control has not been
fully realized. Additionally, recent works on sensor fusion for
robotic grasping highlight the importance of integrating mul-
tiple sensing modalities, including force sensors and vision
systems, to achieve optimal grasping strategies [2]. Addi-
tionally, learning-based approaches leveraging reinforcement
learning have demonstrated improved adaptability by en-
abling robots to refine their grasping techniques dynamically
in unstructured environments [5].
The primary objectives of this paper are to design and

implement a ROS2-based control framework that seamlessly
integrates the UR3e robotic arm and the SVH five-fingered
robotic hand, to develop advanced algorithms for real-time,
sensor-driven grip adjustment, and to evaluate the system’s
performance in dynamic manipulation tasks rigorously. By
leveraging the high precision and repeatability of the UR3e,
the human-like dexterity and grasping capabilities of the
SVH hand, and the adaptability enabled through continuous
sensor feedback, this work seeks to push the boundaries of
robotic manipulation in complex, unstructured environments.

Proceedings of the Austrian Robotics Workshop 2025

https://doi.org/10.34749/3061-0710.2025.12 73
Creative Commons Attribution
4.0 International License

D
ra
ft

Laptop
(ROS2 & Python)

UR3e RobotArduino

ObjectApplied
force

SingleTact
Force Sensor

Schunk SVH
End Effector

Fig. 1. The hardware and software architecture for ROS2-based adaptive
grasping with UR3e, Schunk SVH, Arduino, and force sensors

Through this integration, the paper aims to contribute to more
autonomous, flexible, and robust robotic systems capable of
performing nuanced tasks in real-world applications.

II. METHODOLOGY

A. Hardware and Software Architecture

The system integrates hardware and software components
to enable adaptive force-controlled grasping using the UR3e
robotic arm and Schunk SVH end effector. The primary
objective is to create a closed-loop control mechanism that
dynamically adjusts grip force based on real-time sensor
feedback, ensuring reliable and effective manipulation of
objects. This architecture is built around the ROS2 middle-
ware, Python for data processing and control, an Arduino
microcontroller for sensor communication, and SingleTact
force sensors for force measurement, as shown in Fig. 1.
ROS2 is the core communication framework facilitat-

ing data exchange between different system components.
It provides real-time messaging and distributed computing
capabilities that allow nodes running on the control lap-
top, UR3e robotic arm, and Schunk SVH end effector to
interact efficiently. The ROS2 middleware is responsible
for processing position commands, reading joint states, and
handling interrupts triggered when predefined force thresh-
olds are exceeded. This ensures that grasping actions are
dynamically adjusted based on real-time feedback, making
it suitable for handling fragile or deformable objects without
damage. Python is crucial for system monitoring, sensor
data processing, and implementation of control logic. A
Python script running on the control laptop continuously
listens to incoming data from the force sensors transmitted
via the Arduino. The script evaluates whether the grip force
exceeds a predefined threshold and, if necessary, publishes an
interrupt message to ROS2. This interrupt triggers the system
to read the current position of the Schunk SVH fingers and
adjust the grip trajectory accordingly. Once the target force
level is reached, the Schunk hand is activated to hold the
object securely. By leveraging Python’s real-time processing
capabilities, the system ensures that gripping forces remain
within optimal limits, preventing excessive force application
and object slippage.
The Arduino microcontroller intermediates the force sen-

sors and the ROS2-based control system. The force sensors
are physically attached to the fingers of the Schunk SVH

end effector, and their readings are collected and processed
by the Arduino. These readings are then forwarded via
a serial connection to the control laptop, where Python
scripts interpret and analyze the data. The Arduino operates
continuously, ensuring that sensor values are relayed in
real-time without delay. This low-level sensor acquisition
and communication process is essential for the higher-level
control algorithms that govern adaptive grasping. A key
component in the system’s force-sensing capability is the
SingleTact force sensor, which provides precise and high-
resolution force measurements. The sensor is integrated with
a control board that converts analog signals into digital
values, ensuring stability and accuracy under different grasp-
ing conditions. These digital readings are transmitted to the
Arduino through an I2C (Inter-Integrated Circuit) interface,
allowing for efficient data acquisition. The control board
also handles sensor calibration, ensuring the force readings
remain reliable and consistent. Integrating these sensors into
the system enables continuous force feedback, allowing for
fine-tuned adjustments to the grip strength of the robotic
hand.

B. UR3e Integration and Control in ROS2
The UR3e was integrated within the ROS2-based system

to provide precise motion control and seamless coordination
with the Schunk SVH end-effector. The setup involved
configuring network communication, installing the ROS2
driver, validating hardware functionality, and developing
custom scripts for motion planning and control. To ensure
compatibility with ROS2, the system was set up with Ubuntu
and ROS2 Humble. Network communication was established
by assigning static IP addresses to both the control PC
and the UR3e teach pendant, enabling direct Ethernet-based
communication.
The Universal Robots ROS2 driver was obtained from the

official GitHub repository1 and compiled within the ROS2
workspace. A communication program was created on the
UR3e teach pendant to enable external command execution.
Once the driver was launched on the PC, remote operation
of the UR3e was activated, allowing full control via ROS2.
To verify hardware functionality, the UR3e was tested using
ROS2 service calls and topic-based communication, ensuring
proper joint state updates and motion command execution.
For simulation, Gazebo was installed, along with the official
Universal Robots ROS2-Gazebo integration package2. This
setup provided a virtual testing environment, allowing trajec-
tory validation before real-world execution. The combination
of simulation and physical validation enabled safe experi-
mentation with different control strategies, ensuring reliable
robot performance.

C. Motion Control and Trajectory Execution
The motion control of the UR3e robotic arm was im-

plemented using MoveIt2 in ROS2, allowing for joint and

1https://github.com/UniversalRobots/Universal_
Robots_ROS2_Driver

2https://github.com/UniversalRobots/Universal_
Robots_ROS2_Gazebo_Simulation

Proceedings of the Austrian Robotics Workshop 2025

https://doi.org/10.34749/3061-0710.2025.12 74
Creative Commons Attribution
4.0 International License

D
ra
ft

Cartesian-based movement execution. Python scripts were
developed to control the UR3e’s motion using inverse keni-
matics and trajectory planning. MoveIt2 provided advanced
motion planning features, including collision avoidance and
optimized path execution, ensuring smooth and adaptive
manipulation. ROS2 nodes were programmed to adjust the
robot’s movement based on sensor feedback dynamically,
enabling precise grasping and interaction with objects. The
implementation leveraged action servers to execute mo-
tion commands efficiently, ensuring real-time adaptability in
robotic grasping tasks.
1) Joint Control Using MoveIt2: Joint-based control reg-

ulated individual joint angles, allowing precise control over
the UR3e’s motion. Instead of defining Cartesian coordinates,
this method focused on achieving a specific joint configura-
tion. The MoveIt2 framework computed time-parameterized
trajectories that guide each joint to its target position while
respecting joint-level velocity and acceleration constraints.
Inverse kinematics was performed using the default KDL
solver in MoveIt2, which provides joint configurations that
are locally optimal in terms of minimal displacement from
the current joint state. This ensures smooth, continuous
motion that is well-suited for real-time grasping tasks. The
ROS2 action server sent motion commands, ensuring reliable
execution. This approach is particularly useful for structured
tasks such as pick-and-place operations, where predefined
joint configurations are essential. The combined joint and
cartesian control implementation process is provided as a
pseudo-code, as shown in Algorithm 1.

Algorithm 1 Combined Pseudo Code for UR3e Joint &
Cartesian Control Using MoveIt2 in ROS2
1: Initialize the ROS2 system and create a node for

MoveIt-based control.
2: Establish an Action Client for MoveIt2’s MoveGroup

action server.
3: Wait for the /move action server to become avail-

able.

4: Define a function for Joint Control (MoveJ):
- Set target joint positions.
- Specify velocity and acceleration scaling factors.
- Create MoveIt2 joint constraints and assign them to
UR3e joints.
- Send the MoveJ command via MoveIt2 Action Client.
- Execute MoveJ with chosen velocity and acceleration.

5: Define a function for Cartesian Control (MoveL):
- Set a target position in Cartesian space (x,y,z).
- Apply end-effector constraints for straight-line motion.
- Use a bounding box or waypoints for accurate posi-
tioning.
- Send the MoveL command to the action server.
- Execute MoveL with controlled speed and accuracy.

6: Keep the ROS2 node running for continuous operation.
7: Shutdown the node upon completion.

2) Cartesian Control Using MoveIt2: Cartesian control
was implemented to enable the UR3e’s end-effector to reach
specific positions in Cartesian space (X, Y, Z) rather than
following predefined joint angles. This approach relied on the
inverse kenimatics to calculate the required joint positions
dynamically. MoveIt2 generated collision-free trajectories,
ensuring smooth and precise motion. Cartesian constraints,
such as bounding boxes and position constraints on the wrist,
were applied to maintain accuracy. This method is partic-
ularly beneficial for applications with critical end-effector
positioning, such as assembly tasks and object manipulation.
Fig. 2 demonstrates motion control of a UR3e robot

using ROS2 and MoveIt2, showcasing both joint-based and
Cartesian-based control methods. In the left section (a),
MoveJ is used for joint-space motion planning, where the
robot moves through a series of predefined joint angles for
precise articulation. In the right section (b), MoveL is applied
for Cartesian-space motion, ensuring the end-effector follows
a straight-line trajectory in 3D space. The terminal outputs
confirm the successful execution of both control commands,
with MoveJ handling overall joint positioning and MoveL
ensuring smooth linear movements. These approaches allow
flexible motion planning, depending on the task require-
ments, such as obstacle avoidance or precise end-effector
placement.

D. Schunk SVH end-effector

Integrating the Schunk SVH five-fingered hand within
the ROS2-based system followed a structured approach to
ensure reliable operation and precise control. The integration
process consisted of system setup, library installation, hard-
ware validation, and the development of custom scripts for
joint control. The software environment was configured by
installing Ubuntu with ROS2 Humble, ensuring compatibility
with the Schunk SVH ROS2 driver. Dependencies were
verified and installed to facilitate seamless communication
between ROS2 and the end effector. The Schunk SVH ROS2
driver was obtained from the official GitHub repository3. Due
to limited documentation of the SVH ROS2 driver, script

3https://github.com/SCHUNK-SE-Co-KG/schunk_svh_
ros_driver

Fig. 2. Comparison of joint-space (MoveJ) and Cartesian-space (MoveL)
motion control for a UR3e robot using ROS2 and MoveIt2

Proceedings of the Austrian Robotics Workshop 2025

https://doi.org/10.34749/3061-0710.2025.12 75
Creative Commons Attribution
4.0 International License

D
ra
ft

development required debugging and adaptation of provided
examples. These custom scripts formed the foundation for
reliable communication between ROS2 and the SVH hand.
The hand was connected via USB, and communication with
the ROS2 framework was achieved without issues. The
provided ROS2 script examples were adapted to control
each joint of the Schunk SVH hand. These scripts were
used to execute test sequences, verifying the accuracy and
repeatability of joint movements. The inverse kenimatics was
applied to the end effector to accurately position the end
effector (EE) for the pick-and-place tasks. The transforma-
tion matrix represents the position and orientation of the
end effector relative to the target object, which was used
as input to the inverse kenimatics algorithm. The solution
provides the necessary position and orientation of the end
effector to ensure that the robot’s arm places it precisely at
the required location. This calculation considers the robot’s
physical constraints and ensures that the end effector reaches
the target with the correct pose without recomputing the
inverse kinematics of the entire arm.

E. Force sensors

1) Sensor Selection and Setup: A SingleTact capacitive
force sensor was selected due to its high sensitivity and
compact form factor, making it suitable for integration into
the Schunk SVH robotic hand. The sensor is small enough
to be affixed to the inner gripping surfaces of the fingers,
enabling direct measurement of contact forces during object
manipulation. The sensor was connected to its control board,
which provided signal conditioning and a digital output
accessible via an I2C interface. An Arduino Uno was used
to interface between the control board and ROS2. To ensure
reliable force measurements, the sensor was placed on the
distal phalanx of the robotic thumb, as shown in Fig. 3. This
location was chosen to ensure contact with the sensor while
grasping objects of varying shapes.
2) Serial Communication and Data Parsing: The force

sensor data was acquired using an Arduino Uno microcon-
troller, which then transmits the sensor readings at a 57600
baud rate over a serial connection. The flowchart provides
the communication process, as shown in Fig. 4. The Arduino
firmware transmits raw integer values, which are then parsed
and processed in a Python-based ROS2 node (stopper.py)
running on an Ubuntu-based control system. The node reads

Fig. 3. The placement of SingleTact force sensor on the distal phalanx of
SVH

Start System

Launch Schunk Driver:
ros2 launch

schunk svh driver

schunk svh driver.launch.py

Start Arduino Reader:
python3 stopper.py

Launch hand stopper:
ros2 launch

schunk svh driver

hand stopper launch.py

Read Serial Data
from Arduino
Threshold Exceeded?

stopper.py publishes interrupt_signal

hand stopper ReadsCurrent Hand Pose

Publish New Pose to Hand

Manual Hand Pose Change:
ros2 topic pub --once

/right hand/joint trajectory

trajectory msgs/JointTrajectory {...}

Pose Update Completed

Yes

No

Fig. 4. The flowchart of Schunk SVH communication using ROS2

sensor data in real time and triggers a hand-stop interrupt
signal once the force reaches a predetermined threshold. A
rising edge detection mechanism ensures that an interrupt
signal is only published when the sensor value exceeds a
threshold for the first time, preventing redundant commands.
3) ROS2 Node hand stopper: Once an interrupt signal is

triggered by stopper.py, the hand stopper node executes a
defined script to halt the hand’s movement immediately. This
is achieved by retrieving the most recent joint positions from
the /joint states topic and sending this as a new trajectory
command to maintain the current pose.
The node subscribes to /joint states to continuously update

an internal dictionary containing the latest joint positions of
the right hand. When an interrupt is received, the node:

• Checks if valid joint states have been recorded. If no
valid positions are available, it does not issue a stop
command to avoid unintended behavior.

• Retrieves the most recent joint positions for the right-
hand fingers.

• Constructs a JointTrajectory ROS2 message with these
positions as the target.

• Publishes this trajectory to /right hand/joint trajectory,
ensuring the hand holds its last known position.

To achieve a smooth stop, the trajectory message includes
a short time delay (e.g., 50ms) in order to prevent high
jerk. This ensures a rapid but controlled halt, preventing
excessive force while maintaining stability. The hand remains
in this position until a new command is issued, preventing
unnecessary fluctuations in grip force.
4) Performance Analysis: The system mitigated excessive

gripping force by dynamically adjusting the hand’s pose
in response to high-pressure readings. Key results include
a significant reduction in grasping force, ensuring the safe
handling of fragile objects. Additionally, real-time data pro-
cessing enabled immediate response to pressure fluctuations,
allowing for precise and timely grip adjustments. Adaptive
pose control enhanced the gripper’s efficiency and simplified

Proceedings of the Austrian Robotics Workshop 2025

https://doi.org/10.34749/3061-0710.2025.12 76
Creative Commons Attribution
4.0 International License

D
ra
ft

dc

a b

Fig. 5. UR3e home and object-picking position in real and simulated
environments

overall control, making it more responsive to varying object
shapes and material properties.

III. RESULTS AND DISCUSSIONS

1) UR3e Motion Execution in Simulation and Real-World:
The validation of robotic grasping systems relies on ensuring
that simulated motion planning closely mirrors real-world
execution. To achieve this, the UR3e robotic arm was first
tested in a simulated environment before deploying the same
motion sequences in real-world trials. The Gazebo simulation
platform generated and refined motion trajectories, ensuring
that the robotic arm’s planned movements were accurate
and feasible. Two positions are provided to demonstrate the
alignment between simulation and reality. Fig. 5 (a) captures
the UR3e in a real-world setup at its home position, while
Fig. 5 (b) presents the corresponding simulated model in
Gazebo. Similarly, Fig. 5 (c) and (d) showcase the robot
at the object-picking position in both real and simulated
environments. The consistency in joint configurations and
movement sequences across both domains highlights the
effectiveness of the ROS2-based motion control system in
ensuring reliable robotic manipulation. During execution, the
UR3e robot follows a structured sequence, beginning from
a predefined home position before transitioning into object
interaction tasks. The home position establishes a stable
and repeatable starting point, improving trial consistency.
From this state, the robot moves towards the target object
following a planned trajectory, ensuring smooth transitions
and avoiding unintended deviations. The inverse kenimatics
solver calculates the optimal joint configurations, which are
first validated in Gazebo before real-world execution. This

step ensures that the simulated robot’s movement precisely
mirrors the physical robot’s behavior, reducing potential
errors during deployment. The comparison between sim-
ulation and real-world execution confirms the robustness
of trajectory planning and motion replication. The UR3e
successfully follows pretested motion paths, demonstrating
the reliability of ROS2-based control for adaptive robotic
applications. The seamless transition from simulation to real
execution minimizes risk, improves efficiency, and ensures
safe and repeatable grasping operations.
2) Force-Controlled Grasping and Object Handling: As

the Schunk SVH hand approaches the target, it gradually
applies force until reaching a predefined threshold, ensuring
a controlled grasp. The threshold varies based on the object’s
properties, with 5 N used for this demonstration, as shown in
Fig. 6. Excessive force application stops once the threshold
is met, and the robot moves toward the endpoint while main-
taining a stable grip. Upon reaching the target, the robotic
hand gradually releases the force, ensuring smooth object
placement. This adaptive control prevents slippage, reduces
the risk of damage, and ensures secure handling. The results
confirm the effectiveness of the force-controlled grasping
strategy, where the robotic hand dynamically adjusts its
grip to accommodate different objects. The system prevents
excessive force while maintaining stability, demonstrating
the ROS2-based closed-loop control’s reliability. The force
trajectory in Fig. 6 highlights stable gripping and controlled
release, validating its suitability for adaptive robotic manip-
ulation.
3) Sequential Adaptive Grasping Demonstration: The se-

quence illustrates the adaptive grasping process of a robotic
hand, showcasing its transition from an open resting state to
precise object manipulation, as shown in Fig. 7. The robotic
hand is initially fully open, relaxed, and ready for action.
It then spreads its fingers to maximum extension, demon-
strating flexibility before gradually moving towards a half-
closed state, signaling the beginning of a grasping motion.
As the thumb flexes inward, the hand adjusts its posture for
an impending grasp. During this transition, the robotic hand
momentarily forms expressive gestures, including the ”rock
and roll” and ”peace sign,” highlighting its dexterity and
human-like articulation. Moving beyond expressive gestures,
the hand focuses on functional grasping, positioning itself
precisely over an object in the hovering phase, preparing
for contact. It then executes a precision grip, delicately

Fig. 6. Force profile of adaptive grasping and object handling

Proceedings of the Austrian Robotics Workshop 2025

https://doi.org/10.34749/3061-0710.2025.12 77
Creative Commons Attribution
4.0 International License

D
ra
ft

Fig. 7. Sequential demonstration of robotic hand gestures and grasping

securing a small spherical object, emphasizing controlled fin-
ger movements. Finally, the robotic hand can gently handle
fragile objects, carefully lifting an apple, ensuring a secure
yet sensitive grasp. This sequence effectively conveys the
robot’s capability for expressive gestures and intricate object
manipulation, reinforcing its potential for advanced robotic
applications.

IV. CONCLUSION

This work demonstrated a ROS2-based force-controlled
grasping system, integrating the UR3e robotic arm and
Schunk SVH hand with force sensors for adaptive and pre-
cise object manipulation. A closed-loop control mechanism
was implemented, where force feedback from the sensors
dynamically regulated grip strength, ensuring secure yet
non-damaging handling of objects. The system was fully
developed within ROS2, utilizing MoveIt2 for motion plan-
ning, RTDE for real-time execution, and Gazebo simulations
for safe validation before deployment. The experimental
validation demonstrated that the robotic hand successfully
adjusted its grip in response to sensor feedback, preventing
excessive force application while maintaining a stable grasp.
Simulated trajectories in Gazebo closely mimicked real-
world execution, confirming the accuracy and reliability of
the ROS2-based motion planning and control framework.
The results highlight the effectiveness of the force-regulated
grasping strategy, allowing the system to handle fragile and
rigid objects with appropriate force levels. The force profile
analysis showed smooth transitions in gripping, transporting,
and releasing objects, validating the system’s adaptability.
The structured motion execution, starting from a home
position to object interaction, further ensured repeatability
and consistency across trials. Transferring simulation-based
planning to real-world execution minimized errors and en-
hanced efficiency, making the approach viable for various
robotic manipulation tasks.
Future work will integrate computer vision-based object

recognition to enable autonomous pick-and-place operations.
This will allow the robot to adjust force thresholds based on
detected object properties dynamically, improving adaptabil-

ity. Expanding the system’s multi-finger coordination will
enhance grasping dexterity, making it suitable for complex
industrial automation, assistive robotics, and logistics appli-
cations. The proposed approach provides a scalable and ef-
ficient solution for adaptive robotic grasping in unstructured
environments.

REFERENCES

[1] A. Bicchi and V. Kumar, “Robotic grasping and contact: A review,” in
Proceedings 2000 ICRA. Millennium conference. IEEE international
conference on robotics and automation. Symposia proceedings (Cat.
No. 00CH37065), vol. 1. IEEE, 2000, pp. 348–353.

[2] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp
synthesis—a survey,” IEEE Transactions on robotics, vol. 30, no. 2,
pp. 289–309, 2013.

[3] M. R. Cutkosky et al., “On grasp choice, grasp models, and the design
of hands for manufacturing tasks.” IEEE Transactions on robotics and
automation, vol. 5, no. 3, pp. 269–279, 1989.

[4] C. Della Santina, C. Piazza, G. Grioli, M. G. Catalano, and A. Bicchi,
“Toward dexterous manipulation with augmented adaptive synergies:
The pisa/iit softhand 2,” IEEE Transactions on Robotics, vol. 34, no. 5,
pp. 1141–1156, 2018.

[5] B. K. Farkas, P. Galambos, and K. Széll, “Advances in autonomous
robotic grasping: An overview of reinforcement learning approaches,”
in 2024 IEEE 6th International Symposium on Logistics and Industrial
Informatics (LINDI). IEEE, 2024, pp. 000 213–000 220.

[6] Z. Kappassov, J.-A. Corrales, and V. Perdereau, “Tactile sensing in
dexterous robot hands,” Robotics and Autonomous Systems, vol. 74,
pp. 195–220, 2015.

[7] Z. Kingston and L. E. Kavraki, “Robowflex: Robot motion planning
with moveit made easy,” in 2022 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2022, pp. 3108–
3114.

[8] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ international
conference on intelligent robots and systems (IROS)(IEEE Cat. No.
04CH37566), vol. 3. Ieee, 2004, pp. 2149–2154.

[9] A. P. Lindvig, I. Iturrate, U. Kindler, and C. Sloth, “ur rtde: An
interface for controlling universal robots (ur) using the real-time data
exchange (rtde),” in 2025 IEEE/SICE International Symposium on
System Integration (SII). IEEE, 2025, pp. 1118–1123.

[10] J. Matas, S. James, and A. J. Davison, “Sim-to-real reinforcement
learning for deformable object manipulation,” in Conference on Robot
Learning. PMLR, 2018, pp. 734–743.

[11] M. Q. Mohammed, L. C. Kwek, S. C. Chua, A. Al-Dhaqm, S. Na-
havandi, T. A. E. Eisa, M. F. Miskon, M. N. Al-Mhiqani, A. Ali,
M. Abaker, et al., “Review of learning-based robotic manipulation in
cluttered environments,” Sensors, vol. 22, no. 20, p. 7938, 2022.

[12] U. E. Ogenyi, J. Liu, C. Yang, Z. Ju, and H. Liu, “Physical human–
robot collaboration: Robotic systems, learning methods, collaborative
strategies, sensors, and actuators,” IEEE transactions on cybernetics,
vol. 51, no. 4, pp. 1888–1901, 2019.

[13] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng, et al., “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, 2009, p. 5.

[14] S. W. Ruehl, C. Parlitz, G. Heppner, A. Hermann, A. Roennau, and
R. Dillmann, “Experimental evaluation of the schunk 5-finger gripping
hand for grasping tasks,” in 2014 IEEE International Conference on
Robotics and Biomimetics (ROBIO 2014). IEEE, 2014, pp. 2465–
2470.

[15] B. Siciliano, O. Khatib, and T. Kröger, Springer handbook of robotics.
Springer, 2008, vol. 200.

[16] J. Tegin and J. Wikander, “Tactile sensing in intelligent robotic
manipulation–a review,” Industrial Robot: An International Journal,
vol. 32, no. 1, pp. 64–70, 2005.

[17] W. Wang, J. Wang, Y. Luo, X. Wang, and H. Song, “A survey on force
sensing techniques in robot-assisted minimally invasive surgery,” IEEE
Transactions on Haptics, vol. 16, no. 4, pp. 702–718, 2023.

[18] B. Zhang, J. Zhou, Y. Meng, N. Zhang, B. Gu, Z. Yan, and S. I. Idris,
“Comparative study of mechanical damage caused by a two-finger
tomato gripper with different robotic grasping patterns for harvesting
robots,” Biosystems Engineering, vol. 171, pp. 245–257, 2018.

Proceedings of the Austrian Robotics Workshop 2025

https://doi.org/10.34749/3061-0710.2025.12 78
Creative Commons Attribution
4.0 International License

