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Simulation-Driven Optimization of Stanley Controller Gains for
Enhanced Tracking in Autonomous Navigation Robots
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Abstract—Fine-tuning controllers for robotic systems is a
tedious process that often requires significant time for conver-
gence and can lead to mechanical component wear. Having an
accurate simulation of the robotic system and its environment
can help reduce this effort and accelerate the tuning process.

This work presents an optimization-based approach that
leverages simulations to optimize control parameters before
transferring them to a real mobile robot, significantly reducing
fine-tuning effort and the need for extensive real-world testing.
The method follows a two-stage process: first, calibrating the
simulator to closely replicate the mobile robot’s trajectory, and
second, using the refined simulation to optimize the Stanley
controller’s gains. By aligning the simulator’s behavior with
real-world performance, we ensure that control tuning is both
effective and time-efficient, allowing optimized parameters to
be directly applied to the real system.

The methodology is validated through experiments compar-
ing simulated and real-world trajectories, demonstrating that
the optimized gains improve tracking accuracy. Additionally, we
provide an estimation of the achieved improvements, including
tracking error reduction, time savings, and energy consumption
minimized by our approach, highlighting its efficiency in the
fine-tuning process.

Index Terms—Autonomous navigation, Stanley controller,
simulator optimization, control tuning, simulation-to-reality
transfer, parameter optimization.

I. INTRODUCTION

Autonomous navigation is a critical capability for mobile
robots operating in dynamic environments. A key challenge
in this domain is ensuring accurate trajectory tracking, which
is essential for applications such as autonomous vehicles [6],
warehouse automation [9], and field robotics [5]. Stanley
controller is widely used due to its effectiveness in minimiz-
ing lateral errors and maintaining stability during navigation
[11]. However, achieving optimal tracking performance re-
quires careful tuning of the controller’s gains, a process that
is often time-consuming and tedious when performed directly
on a physical robot.
To address this challenge, we propose a simulation-driven

optimization framework that enhances the efficiency of Stan-
ley controller gain tuning. Instead of manually adjusting
control parameters in real-world experiments, our approach
leverages automated hyperparameter optimization techniques
to systematically refine both the simulator parameters and
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Fig. 1. On the left: CHASI, the ARTI robotic platform used in the
experiments. Our method aims to calibrate the simulation environment to
accurately replicate the real-world robot behavior. Once calibrated, control
parameters are fine-tuned in simulation before transferring the optimized
parameters to the real robot. This approach accelerates the tuning process
while minimizing mechanical wear on the physical system.

controller gains. Specifically, we employ Optuna [2], an
efficient framework for hyperparameter search, to explore
optimal configurations while minimizing trajectory tracking
errors. By optimizing in simulation before transferring the
learned parameters to the real system, our method reduces the
need for extensive physical testing while maintaining real-
world applicability [7], [8], [14].
The remainder of this paper is structured as follows: Sec-

tion 2 describes the robot model used in this work. Section
3 defines the environment and the mathematical framework
used throughout the paper. Section 4 details the proposed
methodology, while Section 5 presents the experimental
results along with their analysis. Finally, Section 6 concludes
the paper and discusses directions for future work.

II. RELATED WORK

Accurate control tuning for mobile robots is a critical
challenge, particularly in scenarios where real-world testing
is expensive, risky, or time-consuming. A common strategy
to address these challenges involves the use of high-fidelity
simulators to replicate the behavior of robotic systems.
However, discrepancies between simulation and actual per-
formance, commonly referred to as the sim-to-real gap, can
significantly reduce the reliability of control policies if the
simulator is not properly calibrated.
Sim-to-real transfer techniques have received increasing

attention in robotics. Domain randomization [13] and system
identification methods [10] are often employed to bridge
the simulation-reality gap by either increasing robustness
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to environmental variation or aligning simulator dynamics
with the real system. DROPO [12] focus on estimating
domain randomization ranges for improving transferability
of optimized policies. These methods often assume that the
simulation environment and its physical model provides an
adequate representation of the real-world system.
Hybrid learning strategies have been proposed to in-

corporate real-world data for improving simulation fidelity
and learning efficiency [4]. Similarly, [1] evaluate var-
ious simulators, revealing limitations in modeling elastic
impacts and complex motions, even with contact parameter
tuning—highlighting the need for more accurate physical
calibration.
While these works typically address either simulation

calibration or control optimization in isolation, our method
introduces an integrated three-stage approach: first refining
simulation parameters to match real-world robot behavior,
then optimizing control gains within the calibrated envi-
ronment and finally transfer the learned parameter to the
real robot. This ensures that the resulting policies are both
physically grounded and readily transferable, minimizing
reliance on real-world trials.

III. ROBOT MODEL

A. Ackerman Kinematic Model

The Ackerman kinematic model is widely used to de-
scribe the motion of wheeled vehicles with nonholonomic
constraints [3]. It assumes no lateral slip and is based on the
geometry of steering. The vehicle’s motion is governed by
the following equations:

ẋ= vcos(θ),
ẏ= vsin(θ),

θ̇ =
v
L
tan(δ ).

(1)

where x and y represent the vehicle’s position coordinates,
θ is the heading angle, v denotes the velocity, L is the
wheelbase length, and δ corresponds to the steering angle.

B. ARTI-Controller

The ARTI-Controller is based on the Stanley method
[11], a widely used approach for autonomous vehicle path
following that minimizes cross-track and heading errors to
ensure smooth trajectory convergence.
The steering control law is defined as:

δv = θe+ tan−1
(

ke f a
v+ vmin

)
(2)

where δv is the steering output, θe = θ −θp is the heading
error, and e f a is the cross-track error from the front axle to
the closest path point (cx,cy). The gain k adjusts the influence
of the cross-track error, while v is the vehicle speed, and vmin
ensures stability at low speeds.
To enhance robustness and adaptability at different speeds,

the ARTI-Controller applies gain scheduling for k across
velocity ranges, enabling dynamic tuning of the control
response. The gain values are summarized in Table III-B. The

Path

Fig. 2. Diagram illustrating the variables used by the Stanley controller to
compute the control output

geometric relationship of the control variables is illustrated
in Figure 2.

TABLE I
STANLEY CONTROL GAINS FOR DIFFERENT VELOCITY RANGES.

Velocity 0≤ v< 0.5 0.5≤ v< 0.8 0.8≤ v≤ 1.0
k k1 k2 k3

IV. ENVIRONMENT DEFINITION

A. Real-World (Physical) System Representation

The real system is modeled as a discrete-time nonlinear
state-space system:

xri+1 = f r(xri ,u
r
i ,ααα

r,Td) (3)

where xri = [xri ,y
r
i ,θ r

i ]
T represents the robot’s position and

orientation at time step i, and uri = [δ r
vi ,v

r
i ]
T denotes the

steering and linear velocity control inputs. The dynamics
function f r(·) is defined according to the Ackermann model
in Equation 1.
The closed-loop controller is parameterized by αααr =

{kr1,kr2,kr3}, which affect the robot’s tracking behavior. The
desired trajectory is defined as:

Td =
{
xdi = [cxi ,cyi ]

T | i= 1, . . . ,Nd
}

(4)

where xdi are the target waypoints in Cartesian coordinates.
A sampled trajectory from the real system consists of a

discrete sequence of the robot’s states, defined as:

Tr
αααr = {xri | i= 1, . . . ,Nr} (5)

where each xri is a recorded state of the robot under the
controller parameters αααr, and Nr is the number of sampled
steps.

B. Simulated System Representation

The simulated system is represented as:

xsi+1 = f s(xsi ,u
s
i ,ααα

s,βββ ,Td) (6)

where xsi = [xsi ,y
s
i ,θ s

i ]
T is the simulated state, and usi =

[δ s
vi ,v

s
i ]
T is the control input, with δ s

vi as the steering angle
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and vsi as the linear velocity. The parameters αααs = {ks1,ks2,ks3}
configure the Stanley controller in simulation, while βββ =
{β1,β2,β3,β4,β5} defines configurable simulation parame-
ters defined in the Table II used to more accurately capture
the interaction between the robot and the real system. The
function f s(·) approximates the simulated system’s transition
dynamics.
A simulated trajectory consists of a sequence of discrete

states:
Ts

αααs,βββ = {xsi | i= 1, . . . ,Ns} (7)

where Ns is the number of recorded samples. The trajectory
Ts depends on the control parameters in the simulation
environment αααs and simulation parameters βββ .

C. System Discrepancy Measure

To quantify the difference between two trajectories T1 =
[T1x ,T1y ] and T2 = [T2x ,T2y ], we define a cost function that
integrates well-known metrics: Mean Square Error (MSE)
and Dynamic Time Warping (DTW) .

L (T1,T2) =MSE
(
DTW(T1x ,T2x) ,DTW

(
T1y ,T2y

))
(8)

DTW first aligns the x- and y-coordinate sequences to
account for temporal variations; MSE then measures the de-
viation between the aligned pairs, yielding a robust similarity
metric even under phase shifts or speed differences.

D. Problem Definition

Our objective is to minimize the tracking error between the
real trajectory (5) of the physical robot (3) and the desired
trajectory (4). This is achieved by fine-tuning the control
parameters ααα . We formulate the optimization problem as:

ααα∗ = argmin
ααα

L (Td ,Tr
αααr) (9)

where L (Td ,Tr
αααr) represents the discrepancy between the

desired trajectory Td and the real trajectory Tr
αααr .

To achieve this, we first use a simulator to capture the
robot’s initial real-world behavior through a calibration pro-
cess. Then, we fine-tune the controller gains in the calibrated
simulation before transferring these optimized gains to the
real system.

V. METHOD

This section provides a detailed description of our method.
Figure 3 illustrates the overall process, while Table 1 sum-
marizes the key steps for clarity. Our approach is divided
into four main steps:
1) Real-World Data Collection: Gather the robot’s tra-

jectory Tr
αααr
0
following the desired trajectory Td using

the initial control parameters αααr
0.

2) Simulation Calibration: The goal of this step is to
ensure that the robot’s simulated trajectory Td closely
resembles the real trajectory Tr

αααr
0
obtained using the

initial control parameters. To achieve this, we trans-
fer the initial control parameter values from the real

TABLE II
NOTATION AND NAME OF VARIABLES

Symbol Description
Td Desired trajectory
Tr

αααr Real trajectory from the robot with control parameters αααr

Ts
αααs ,βββ Simulated trajectory with parameters αααs,βββ

αααr , αααs Control parameters (real-world & sim.)
αααr

0, αααs
0 Initial control parameters (real-world & sim.)

ααα∗ Optimized control parameters
βββ Set of simulation parameters
βββ 0 Initial simulation parameters
βββ ∗ Optimized simulation parameters
β1 Delay velocity
β2 Delay steering
β3 Max. allowed acceleration
β4 Max. allowed angular velocity
β5 Angular acceleration

robot to the simulation, i.e., αααs
0← αααr

0. Afterwards, we
calibrate the simulation to ensure that the simulated
robot’s behavior closely approximates the real-world
system, i.e., xsi ≈ xri by fixing the values of the initial
control parameters αααs

0 and optimizing the set of config-
urable simulation parameters βββ through the following
minimization problem:

βββ ∗ = argmin
βββ

L (Tr
αααr
0
,Ts

αααs
0,βββ

)

⇒ xsi ≈ xri , ∀i ∈ {1, . . . ,N}
(10)

The function L (Tr
αααr
0
,Ts

αααs
0,βββ

), introduced in (8), quan-
tifies the discrepancy between the simulated and real
trajectories.
This process involves executing the path-following task
in simulation using the same desired trajectory Td

from (4) and iteratively adjusting βββ until the optimal
parameters βββ ∗ are obtained.

3) Fine-tuning of control parameters: Once the simu-
lated robot accurately replicates the real robot’s behav-
ior, the objective of this step is to optimize the control
parameters to ensure the simulated robot closely fol-
lows the desired trajectory Td . To achieve this, after
calibrating the simulation state xsi , we fix the optimal
simulation parameters βββ ∗ obtained in the previous
step and fine-tune the control gains αααs by solving the
following minimization problem:

ααα∗ = argmin
αααs

L
(
Td ,Ts

αααs,βββ ∗
)
, (11)

This optimization process improves tracking accuracy,
ensuring that the simulated trajectory Ts closely aligns
with the desired trajectory Td .

4) Transfer to Real System: After optimizing the con-
trol parameters to ensure the simulated robot closely
follows the desired trajectory, we transfer the tuned
parameters αααr ← ααα∗ to the physical system (3) and
validate their performance under real-world conditions.
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Fig. 3. Pipeline of our method: The process begins by collecting the real robot’s trajectory while following the desired path. This trajectory is then
used to calibrate the simulation environment iteratively until the simulated behavior closely matches the real-world performance. Once calibrated, control
parameters are fine-tuned in simulation and subsequently transferred to the real robot to enhance its tracking accuracy.

Algorithm 1 Simulation-Based Control Gain Optimization

1: Input: Desired trajectory Td

2: Output: Optimized control parameters ααα∗
3: Step 1: Real-World Data Collection
4: Tr

αααr = {xri | i= 1, . . . ,Nr}
5: Step 2: Simulation Calibration xs′i ≈ xri
6: Initialize αααs

0← αααr
0; βββ ← βββ 0 ▷ Load simulation default

values
7: while L (Tr

αααr ,Ts
αααs,βββ )≥ ε do

8: Ts
αααs,βββ = {xsi | i= 1, . . . ,Ns}

9: βββ = βββ −η∇βββ L (Tr
αααr ,Ts

αααs,βββ )
10: end while
11: Return βββ ∗← βββ ▷ Final optimized parameters
12: Step 3: Fine-Tuning of Control Parameters in sim.
13: βββ ← βββ ∗ ▷ Load optimized simulation parameters
14: while L (Td ,Ts

αααs,βββ )≥ ε do
15: Ts

αααs,βββ = {xsi | i= 1, . . . ,Ns}
16: αααs = αααs−η∇αααsL (Td ,Ts

αααs,βββ )
17: end while
18: Return ααα∗← αααs ▷ Final optimized control parameters
19: Step 4: Control parameters transfer
20: αααr← ααα∗

VI. EXPERIMENTS AND RESULTS

We evaluated our approach using the CHASI robotic
platform, a mobile robot with an Ackermann steering con-
figuration (0.8 m × 0.6 m × 0.45 m). Simulations were
conducted in the Stage simulator, a lightweight 2D tool
that efficiently models sensor data and robot motion. Our
navigation stack was fully integrated into Stage, enabling
controlled and repeatable testing.
For real-world validation, we collected trajectory data

in a 14 m × 2 m test area and compared it with the
simulated results. Simulation and control parameter tuning
were optimized using Optuna, a widely used hyperparameter
optimization framework.

A. Real-World Collected Data

For this experiment, we used the desired trajectory illus-
trated in Figure 4 (a), denoted as Td . This trajectory consists
of both straight-line segments and two sharp curves, designed
to assess and optimize the robot’s performance in both linear
and curved path-following scenarios.
The actual trajectory followed by the robot, denoted as

Tr
αααr
0
using the initial default control parameters αααr

0, is also
shown in Figure 4 (a). It can be observed that the robot
successfully tracks the straight-line segments of the trajec-
tory. However, when navigating the curved sections, the robot
struggles to maintain accurate path tracking, exhibiting a no-
ticeable error gap between the desired and actual trajectories.

B. Simulation calibration

This step aimed to align the simulator with the real
robot’s behavior. Figure 4 (b) shows the simulated trajectory
Ts

αααs
0,βββ 0

using default control parameters αααs
0 and simulation

parameters βββ s
0. While the trajectory appears to follow Td , a

discrepancy with the real trajectory Tr
αααr
0
reveals inaccuracies

in the simulation.
To improve fidelity, we used the real robot’s trajectory Tr

αααr
0

as a reference, aiming to match its deviations while tracking
Td . Keeping the control parameters fixed at αααs

0, we optimized
the simulation parameters βββ using Optuna. This adjustment
resulted in a refined simulated trajectory, Ts

αααr
0,βββ
∗ , which more

closely aligned with the real-world trajectory. As shown in
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Fig. 4. (a) Robot performance before control parameter optimization. (b) Simulation inaccuracy before calibration and the improvement afterward. (c)
Changes in simulation parameters after calibration. (d) Simulation improvement after tuning the control parameters. (e) Adjustments in control parameters
after fine-tuning. (f) Final improvement in real-robot tracking using the fine-tuned control parameters.

Figure 4 (b), this calibrated trajectory better represents the
real robot’s performance.
Figure 4 c) presents a comparison between the default

initial simulation parameters βββ 0 and the optimized param-
eters βββ ∗, highlighting the changes introduced through the
calibration process. The most significant adjustments can be
observed in the velocity delay and steering delay, suggesting
that the real robot experiences inherent delays when exe-
cuting both velocity and steering commands. Additionally,
the maximum allowable acceleration was increased, while
the maximum angular velocity was slightly reduced. Con-
versely, the steering angle acceleration was increased. These
adjustments enable the simulated robot to better replicate the
real-world robot’s behavior, effectively capturing hardware-
induced limitations and response delays.

C. Control Parameter Tunning

In this step, we fine-tuned the control parameters in
simulation, αααs, while keeping fixed the optimized simulation
parameters βββ ∗ from the previous stage. Since βββ ∗ already
captures the real robot’s characteristics, the goal was to
adjust αααs to ensure the simulated robot closely follows the
desired trajectory, Td . After optimization, we obtained an
improved trajectory, Ts

ααα∗,βββ ∗ , which better aligns with the

reference trajectory. The resulting trajectories are shown in
Figure 4 (d), while Figure 4 (e) compares the initial control
parameters, αααs

0, with the optimized parameters, ααα∗.

D. Transfer Learning

In this step, the optimized control parameters are trans-
ferred to the real robot αααr ← ααα∗. The robot is then tested
again in the same environment, following the initial reference
trajectory to evaluate its performance.
Figure 4 f) illustrates the desired trajectory Td , the real

robot’s trajectory before optimization, Tr
αααr
0
, and the trajectory

obtained after applying the optimized control parameters,
Tr

ααα∗ . As observed, the optimized trajectory follows the
desired path more closely. While the robot already performed
well on straight-line segments, the most significant improve-
ment is evident in tracking the curved sections, demonstrat-
ing the effectiveness of our method for this trajectory.

E. Achieved Improvements

This section presents the improvements in three key as-
pects: tracking error, time savings, and energy consumption.
The results are summarized in Table III, with the correspond-
ing calculations detailed in Appendix VIII. These estimations
are based on approximate data.
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The table shows that our method achieved a 51.08%
reduction in tracking error, saved approximately 3.84 hours
of execution time, and reduced energy consumption by 9.175
kWh.

TABLE III
PERFORMANCE AND RESOURCE CONSUMPTION IMPROVEMENTS

Metric Original Gains Optimal Gains Improved
Tracking Error (2D-DTW) 3.72 1.82 51.08%

Estimated Real
System Consumption

Optimized Method
Consumption

Reduction

Time (hours) 9.34 5.50 3.84
Energy Consumption (kWh) 9.34 0.165 9.175

VII. CONCLUSION

We presented a simulation-driven framework to optimize
the Stanley controller for autonomous navigation. The ap-
proach follows a two-stage process: first calibrating simu-
lation parameters to reflect real-world dynamics, then opti-
mizing controller gains within the calibrated simulator. This
method reduces real-world experimentation, lowers mechan-
ical wear, and improves trajectory tracking. The resulting
control parameters transferred effectively to the physical
robot, validating the framework’s reliability.
Future work will explore broader trajectory variations to

derive more generalized gains and incorporate sensor noise
modeling—particularly from laser scans—as additional tun-
ing parameters, given their significant impact on navigation
in dynamic environments.

VIII. APPENDIX

A. Tracking Error Improvement Calculation

The tracking error improvement is computed using the
following equation:

Improvement%=
eig− eog

eig
×100 (12)

where eig = 3.72 represents the tracking error with the
initial gains, whereas eig = 1.82 represents the tracking error
with the optimized gains obtained using our method. This
formulation quantifies the relative improvement achieved
through optimization.

B. Time Savings Calculation

To estimate the time required for real-system optimization,
we define:
• ta = time to complete one trajectory (170 sec). This
value has been obtained directly from Tr

αααr
0
during the

data collection.
• σa = repositioning time before a new trial (120 sec).
This time was obtained experimentally in past experi-
ments.

• No = total trials required for the control parameter
optimization (116)

The total estimated time required on the real system is:

Estimated Real System Time=
(ta+σa) ·No

3600

Using our method, the time per simulation trial was ts = 45
sec, with Ns = 324 trials needed for simulation calibration.
The total time spent in simulation is:

Estimated Simulation Time=
(ts ·No)+(ts ·Ns)

3600
C. Energy Consumption Calculation

To estimate the energy consumption required for tuning the
control parameters on the real robot, we use pr · top, where
pr = 1kW is the robot’s power consumption, obtained from
technical datasheet; top = 9.34h is the estimated time required
to complete the tuning process on the real robot.
To compute the energy consumption using our method,

we consider a standard laptop’s power consumption of pc =
0.030kW . Given that the total simulation time is ts = 5.5h,
the energy consumption is calculated as pc · ts
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