
D
ra
ft

Investigating 2.5D path-planning methods for autonomous mobile
robots in complex unstructured off-road scenarios*

Andre Koczka1, and Gerald Steinbauer-Wagner1

Abstract—Most of the existing literature focuses on path
planning in 2D, where the 3D world is converted to a 2D grid
map. There is little literature on methods that can natively
utilize 2.5D or 3D information and thus use a less compressed
representation of the environment for planning. In this work,
methods from both groups were systematically compared. A
suitable simulator and physics engine have been chosen to
enable a realistic evaluation of 2.5D navigation in a simulation.
For the methods using the 2D view, classical and widely used
planning algorithms were used. To generate the map for the
classical methods, a 2.5D map was converted into a 2D map
using slope information. The classical search algorithms find a
path based on costs on the 2D map. To test a method that uses
native 2.5D data for planning, a novel approach was developed
that uses the robot’s orientations on a 2.5D elevation map.
This method samples different locations on the 2.5D map and
considers the attitude of the footprint for each position to
generate the cost. The evaluation showed that the proposed
method, which uses 2.5D data directly, planned shorter and
faster paths in most scenarios, while the journey remained safe
and reliable for the robot. The results for the classical, 2D
methods showed that they are especially useful in scenarios
where low computational power is available.

Index Terms—Path planning, Autonomous robots, rapidly-
exploring random tree

I. INTRODUCTION

Path planning for autonomous ground vehicles is usually
done on 2D costmap [6] using a search algorithm. The most
popular way of using a costmap is projecting objects detected
in data from a sensor, like LIDAR or camera, to a cell on
the map, where each position is represented either to be
occupied or free. More advanced solutions take advantage
of the value-range of a 2D costmap in the Robot Operating
System (ROS) [11] and map a probabilistic value to each
cell, which results in a gradient of values instead of binary,
lethal, and non-lethal costs. Both approaches compress the
information gathered by a 3D LIDAR or depth camera while
losing information on the terrain. While this approach can
work well if tuned correctly, it often leads to longer paths,
higher energy consumption, and potentially missed oppor-
tunities due to the conservative representation of the robot-
terrain interaction in 2D. To combat this issue, state-of-the-
art solutions use a 2.5D representation of the environment to
increase the available information on the map and plan more
intelligently by being aware of the actual terrain surface.
Planning in 2D also makes it harder to take the physical

*This work was funded by the Austrian defense research program FORTE
of the Federal Ministry of Finance (BMF) under the project PATH.

1{akoczka,gerald.steinbauer-wagner}@tugraz.at,
Institute of Software Engineering and Artificial Intelligence, Graz University
of Technology, Graz, Austria.

properties of the robot, such as the maximum tilt angle, into
account while planning on off-road areas.

Fig. 1. Flowchart showing the implemented pipeline for testing and
evaluation.

The aim of this paper is to compare planning methods
in kinematically challenging, accurately simulated off-road
environments to gain a better understanding of the properties
and limits of path planning algorithms for 2.5D environ-
mental representations. As 2.5D perception goes beyond the
scope of this work, it is assumed to be perfect. For the
simulation, the widely used robot Husky from Clearpath
Robotics [2] will be used, which is a rigid-body off-road
differential-drive robot. There are also a lot of resources
available to be able to set up a realistic simulation for the
Husky.
The contribution of this work can be summarized as

follows:
• implementation of a method that compresses 2.5D data
to a 2D costmap with minimized loss of information,
that can be used by standard search algorithms.

• a method using 2.5D information natively to estimate
traversability for complex terrains.

• a simulation pipeline with realistic physics and terrain
generation to ensure close-to-life results.

• an evaluation pipeline that is modular, and can be easily
adapted to other path planning techniques in the future
for further research.

II. RESEARCH

For planning a path, in general, the robotics community
has a broad range of well-established methods. Advances in
formulating and solving search and optimization problems
have finally enabled advanced research in path planning in
higher dimensions for drones and off-road vehicles, which
would have been impossible previously. Most solutions rely
on a well-tuned 2D obstacle map where lethal and non-lethal
obstacles are defined to cover the worst-case scenarios and

Proceedings of the Austrian Robotics Workshop 2025

https://doi.org/10.34749/3061-0710.2025.15 91
Creative Commons Attribution
4.0 International License

D
ra
ft

allow for safe traversal. These solutions are computationally
efficient, however, they lack a full understanding of complex
environments. However, novel methods exploit 2.5D data
natively to allow for more intelligent path planning.
The ArtPlanner [17] by Fankhauser et al. from ANYbotics

[1] is one of the few planning pipelines using native 2.5D
information for planning. Their approach requires knowledge
about the robot’s shape and kinematic abilities. They utilize a
sampling-based approach with LazyPRM∗ at its core, which
checks the feasibility of a pose at any given sample point.
Their approach uses the whole body of the robot to check
for collisions and kinematically feasible positions using an
elevation map.
Traversability-Based RRT∗ [16] by Takemura et al. was
originally developed for a planetary rover model. The authors
approach the problem without a mapping algorithm, planning
the path directly on the perceived pointcloud. They use RRT∗

to sample the points and project the robot’s footprint to the
terrain, which they use to calculate an orientation-dependent
cost. The quality of the path in this case is highly dependent
on the LIDAR’s update frequency and point density.
”Risk-Aware Mapping and Planning”(RAMP) [14] from
Sharma et al. uses a compressed 2D representation of the
environment. The authors of the paper approach the problem
from the controller’s perspective, improving known tools and
algorithms to better understand traversability of known and
unknown terrain. The problem the authors describe is the lack
of awareness of known and unknown spaces in the control
phase. The authors use elevation mapping and compress the
2.5D representation into a 2D costmap to make it more
efficient and use an improved path planning approach on
the 2D representation to solve the described problem.
In the paper ”STEP: Stochastic Traversability Evaluation
and Planning for Risk-Aware Off-road Navigation” [8] from
Fan et al. a complete navigation pipeline is presented. The
pipeline aims to solve planning challenges in extreme off-
road situations. The authors approach the problem simi-
larly to RAMP by using elevation mapping for the global
planning problem and converting the 2.5D representation
into a 2D traversability map with a custom cost function.
They, however, couple this approach with the control and
path following problem as well, including the full 2.5D
representation of the environment in the control problem,
by calculating a kinematics-based cost for traversal. They
approach this similarly to [16] from Takemura et al. , by
using the orientation of the robot on a 2.5D map.

III. EVALUATION DESIGN

As presented in the previous section, state-of-the-art works
in off-road planning take one of two approaches:

• pipelines, that use a combination of mapping techniques
and costmap calculations, but plan using standard search
algorithms on a 2D costmap

• methods which extend their cost calculations with native
2.5D data, using the kinematic properties of the robot

In order to evaluate if the two approaches are suitable for
path planning in challenging off-road environments instances

of each approach are prepared and systematically evaluated
in a standardized, simulated setting. The first part of the
implementation and tests, corresponding to the first bullet
point in the above list, was influenced by the works STEP
[8], and RAMP [14], using a selection of search algorithms
based on the suggestions of the paper [10]. The second part
of the evaluation, expanding an algorithm to use 2.5D data
natively has been inspired by the techniques used by the
ArtPlanner [17] and Traversability-based RRT∗ [16]. This
method has been implemented from scratch, as no openly
available solution was available to test at the time of writing.
The two distinct approaches are implemented in ROS and
simulated using CoppeliaSim [12], which supports both
ROS1 and ROS2. We perform the evaluation in simulation
first as extensive tests with hardware and real environments
are not feasible. It has been determined in previous work, that
the best physics engine for simulating rolling and bouncing
(both of which are important properties for the Husky robot)
is Bullet. This is important for the realistic simulation of
robot-terrain interactions. This is also supported by the
benchmark of Kang et al. in [5] and Farley et al. in [9]. The
work of Farley et al. [9] includes the model of the Husky
robot and a corresponding Lua script for CoppeliaSim which
will be used as a basis and extended to extract more data for
the evaluation.

A. Evaluation metrics

The most problematic property of off-road traversal is the
fact that uneven terrain easily pushes the hardware to its
limits. This means that finding routes that don’t exhaust
the robot’s capabilities to a dangerous level while keeping
the path reasonably short and quickly traversable, while
consuming as little energy as possible, are the most important
goals of such a path planner. Thus, we developed a set of
metrics for our evaluation of path planning algorithms for
off road environments:

• standard deviations of roll and pitch are expected to
be lower for the 2D-based algorithms, as these will try
to minimize the cost on the slope-based costmap.

• the length of the planned path is estimated from 2D
coordinates returned by the algorithms.

• traveled path length calculated using the odometry
is expected to deviate from the generated path due to
slippage and sharp turns.

• required energy to complete a path gives a good indi-
cation of planning quality. Paths produced by the two
methods are expected to deviate in energy consumption.

• average and standard deviation of torque of the
robot joints indicate the average of the momentary
efforts the robot had to make along the path. This metric
is expected to be higher for more aggressive plans.

• travel time from sending the goal to reaching the goal
is expected to be correlated with path length, however,
it might deviate due to slippage if a low quality path is
provided which is harder to travel along.

• planning time is the time from issuing the goal to
receiving a path from the planner.

Proceedings of the Austrian Robotics Workshop 2025

https://doi.org/10.34749/3061-0710.2025.15 92
Creative Commons Attribution
4.0 International License

D
ra
ft

• successful traversal of the generated path gives an
indication if the planner has provided a traversable path.
This metric uses a timeout of 6 minutes for reaching the
goal.

IV. METHODOLOGY AND IMPLEMENTATION

In order to evaluate the quality of a path provided by the
path planners, a complete system of perception, planning,
and execution is needed, as the robot will be executing the
plans in the simulation system. The building blocks of this
system are described in this section.

A. 2.5D grid map and conversion to 2D

The first method, which follows the style of papers [8]
and [14], implements a conversion mechanism, that filters
the 2.5D grid map and converts it into a 2D costmap while
maintaining terrain awareness. By doing this, we ensure, that
the initial source of information (the elvation map) ist the
same for both methods, while retaining the maximum amount
of information in 2D. The conversion is done using a slope
filter, which converts slope data into cost values on the 2D
costmap. This method works by applying a mathematical
filter to the elevation map, which calculates the normal vector
of every cell on the map, and takes the arc-cosine of these
normal vectors. This results in a map of slope values in
radians. It is known from the datasheet of the Husky, that
its maximum claimable slope is 30 degrees. It is known
from initial testing, that the realistically climbable slope on
a smooth, rocky surface is around 25 degrees. By adjusting
the maximum degree of slope to be 25 degrees, any slope
that’s over this value will be clipped to the maximum lethal
value on the map. This results in a gradient of slope values
between 0 and 25 degrees, which is a good representation
of where the robot can safely traverse. The cost of a cell on
the map thus looks as follows:

C(x,y) = min(255 · α(x,y)
27

) (1)

where α represents the calculated slope value in degrees at
given map coordinates. The algorithms that will be used
for standard planning on a 2D map are A∗, Theta∗, D∗,
and RRT∗ which were selected based on the decision tree
shown in [10] by Gargano et al. Even though A∗ would
be sufficient to test as a graph-based search algorithm,
due to its wide usage and popularity, its newer iterations,
D∗ and Theta∗ have also been investigated to see if they
have any disadvantage for future work. Thus, the algorithms
Theta∗, and D∗ are expected to perform similarly or even
the same as A∗, because the underlying heuristics guarantee
an optimal solution for each of these algorithms. Theta∗

might perform worse than A∗, due to it connecting line-
of-sight nodes without considering the costs between them.
RRT∗ is considered for its speed, efficiency, and asymptotic
optimality. This is also the algorithm, which will be extended
to use 2.5D information directly. The cost function of each
algorithm, including heuristics, looks as follows:

C(n) = g(n)+h(n)+ γ(n) (2)

where γ(n) represents the cost of the cell at position n shown
in Equation 1. C(n) is then the estimated cost of the path
from the start node until the goal, taking node n. The cost
g(n) is the already accumulated cost until the last node before
expansion, and h(n) is the heuristic cost, which in the case
of A∗ is the Euclidean distance to the goal.

B. Extended RRT∗

The second method uses the height and terrain data of
the 2.5D grid map natively during planning, similar to the
works in [17], [16] and [8] by using the robot’s footprint
to determine the attitude. The most important factor when
planning on rough terrain is the locomotion capabilities of
the robot. This is strictly bounded by its kinematic limits,
like tipping angle, and max climbing angle. Following the
idea of [16] RRT∗ is extended with an additional function,
which projects the robot’s footprint onto the 2.5D data and
determines a cost from its attitude. Instead of doing this on
a pointcloud as shown in the paper [16], it is done on a 2.5D
grid map. This approach has the advantage, that a uniformly
distributed map is used, regardless of point density, and
independent from the capabilities of the sensor. The choice
of RRT∗ ensures that given enough time and samples, the
solution should converge to an optimal path. It is however
planned for future work to also test other sampling-based
methods as a basis for this contribution, like LazyPRM∗, that
is also used by the ArtPlanner [17]. By projecting the robot’s
footprint onto the grid at any given point, the representation
of the robot’s position and attitude can be described with
the translation and attitude of its footprint in space. The
projected plane (called pseudo-plane in [16]) has a normal
vector on the surface of the plane at an arbitrary sampling
point, which at any given time is solely dependent on the
plane’s position relative to the grid map. From this normal
vector, the roll and pitch values can be extracted and used in
a cost function. The cost function is a weighted sum of the
values, similarly to the method shown the paper [16]. The
yaw or rotation of the currently sampled point on the plane
is dependent on the previous (parent) node in case of RRT∗,
and is calculated by taking the angle between the parent and
currently sampled node in reference to the map’s frame. The
four wheels of the robot form a rectangle. Projecting a rigid
rectangle onto a height map is not a trivial problem. If two
opposing corners of a rectangle are at different heights, it
leads to a diagonal split in the middle, which separates the
rectangle into 2 triangles, which leads to two possible normal
vectors, one for each half, without any obvious method to
choose one. To simplify this problem, an assumption is made:
the two rear wheels of the robot will only be considered at
one point, in the middle, forming a triangle of the robot.
While this isn’t ideal, it is still a good representation of the
possible orientation of a rigid-body robot when projected
onto a plane. The footprint is illustrated for the Husky robot
in Figure 2 on the left. Now, projecting these three points
onto a height map will always result in a triangle with an
even surface. More importantly, the normal vector can be
easily calculated now, by taking the cross product of two

Proceedings of the Austrian Robotics Workshop 2025

https://doi.org/10.34749/3061-0710.2025.15 93
Creative Commons Attribution
4.0 International License

D
ra
ft

Fig. 2. The triangle formed between the front two wheels and the average
of the rear wheels illustrated on the Husky robot on the left, and the normal
vector along with the projected triangle footprint visualized in RViz on the
2.5D grid map on the right.

sides of this triangle.
An obvious issue with this method is the fact that if a

small, but lethal obstacle falls into the area of the triangle,
it won’t be considered by the algorithm at all. This wasn’t
an issue for the tests conducted in work, but this case must
be handled in the future for real-life tests. Taking the cross
product of two of the edges of the projected triangle, and
normalizing it results in the normal vector of the plane.
To calculate the pitch and roll of the normal vector, the
following function is used:

g(k) =
[

φk
θk

]
=

[
atan2(nx,nz)
−atan2(ny,nz)

]
(3)

where nx ny and nz represent the components of the
calculated normal vector. The resulting normal vector is
visualized in RViz in Figure 2 on the right.
Pitch and roll can then be used to form the following cost

function:

C(k) = (Wφ
|φk|
Nφ

+Wθ
|θk|
Nθ

)Ws (4)

φ represents pitch, and θ represents the roll values cal-
culated in the previous step. For simplicity, in this proof-of-
concept implementation, only the absolute value of these are
taken, however, the option to use the sign of these variables is
left for future work, as it might be useful to penalize going
up or downhill. The factors Nφ and Nθ are normalization
values, which have been defined empirically to be 100 and
serve the purpose of scaling the values, such that they aren’t
dominant in comparison to the distance cost. Furthermore,
the weight factors Wφ and Wθ have been defined to be able
to adjust the influence of each factor independently, while
Ws adjusts the influence of the entire expression. The weight
values have been set up to be adjustable using a feature of
ROS called ”dynamic reconfigure” [4]. Additionally to the
cost-calculation, an initial feasibility-check is done to ensure
that the roll and pitch values are within the maximum range,
and the sample is thrown away if it isn’t the case.

C. Terrain generation and simulation setup

The ground truth terrains are generated using Blender with
its built-in geometry node plugin using ridged-multifractal
noise [3] which uses Perlin noise[7] at it’s basis. The point
cloud for elevation mapping is also exported during this
process with high density. The main limitations of map
size are the file size for storage and the processing power

needed to use them. The maps used are as large as it was
practically possible, with 50m x 50m. The tested algorithms
are assumed to work seamlessly on a real setup, using a
much smaller, rolling map, if they are able to achieve good
enough performance on such a large map. For this work, a
total of 5 random terrains have been generated randomly to
represent different terrain difficulties. Moreover, a 6th one
was created manually to visualize the benefit of the 2.5D
planning method. This will be shown in Section V. The
terrains are then imported manually into CoppeliaSim. The
starting position of the robot has been chosen to be a random
corner of each map. To increase the number of planning
problems, the opposite corner is used on each map as a
second starting position. This effectively leads to 10 different
terrains from the perspective of the planning algorithm.
For each terrain, 5 goal positions are distributed on the
map. These goal positions have been chosen empirically, by
driving the robot manually and making sure that the positions
are actually reachable. In future work, this process shall also
be automated to be able to test an arbitrary number of terrains
and goal positions. 5 terrains with 2 starting positions and 5
goals each lead to 50 unique planning problems for each of
the tested algorithms. An example terrain with marked start
and goal positions is shown as a 2D costmap in Figure 3. To

Fig. 3. Example goal positions on a generated terrain. The robot’s initial
positions are indicated by a red X in the bottom left corner and in the upper
right corner.

evaluate energy consumption, the Lua script in CoppeliaSim
has been extended to progressively calculate and publish the
cumulative energy used by the virtual motors of the Husky
robot to a ROS topic.

D. Evaluation
For testing, a Python script has been developed which

automates the process, loads the simulation, and saves all
the recorded data. For every algorithm, the program iterates
through generated terrains, and for each terrain, the cor-
responding navigation tasks (goal positions) are executed.
During execution, the script receives data from ROS mes-
sages continuously. All data is saved into .csv data frames
and array files, which are evaluated later using another
automated script. Saving all raw data also makes it possible
to evaluate any run using other criteria in the future. The
flow of the automation script is shown in Figure 4. For path
execution, a basic version of Timed-Elastic-Bands(TEB) [13]
has been used as a controller (without object avoidance), and
tuned empirically to follow the generated paths as strictly as
possible, with as little influence as possible.

Proceedings of the Austrian Robotics Workshop 2025

https://doi.org/10.34749/3061-0710.2025.15 94
Creative Commons Attribution
4.0 International License

D
ra
ft

Fig. 4. The flowchart showing the process of the evaluation, executed by the test script. The script is started manually and iterates through a list of
registered algorithms, terrains and goal positions, which can be of arbitrary length.

V. RESULTS

The results will show averaged metrics over all planning
problems. The final results have only been calculated for
runs that all algorithms completed successfully so that the
comparison stays fair (union of all data where execution
succeeded). A successful execution was defined by reaching
the goal within 6 minutes after generating a path.
First, the number of failed executions will be shown (see
Figure 5). Please note that for RRT∗ and the proposed, ex-
tended RRT∗, which will be called ”RRT∗ Kin.” (kinematic)
in the plots, the worst-case number of failures of 5 full sets of
navigation tasks is given. The most frequent cause of a failed

Fig. 5. The percentage of total failures across algorithms. RRT∗ and RRT∗

kinematic shows the worst case failures of all the runs.

execution was turning on slopes, where a differential drive
robot struggles the most, as it loses friction while also having
a shifted weight distribution. The proposed method has only
failed due to this issue. Other algorithms have frequent cases
of getting stuck in tight corridors or valleys due to the lack
of terrain awareness.
Perhaps the most important finding of all is the average

effort in watt-hours (see Figure 6). It was expected that the
proposed extended method, RRT∗ kinematic, would produce
paths that consume more energy because it takes more
aggressive paths. However, due to the fact that on average it
produced 5% shorter paths than the next best algorithm while
having a low variance in yaw (less turning) made it the best
regarding power consumption in the tested scenarios.
By taking shortcuts at safe places, which are within the

robot’s kinematic capabilities, the proposed method was less
susceptible to turning on slopes and also made less sharp
turns leading to an overall shorter path. This behavior is also
confirmed by the results shown in Figure 7, which shows the
cumulative height difference.
Looking at Figure 7 it can be concluded, that the higher

cumulative height difference did not have a negative influ-
ence on travel times, making the proposed method the fastest
by a small margin. It also shows that travel times are more

Fig. 6. The averaged traveled path lengths in meter on the left, and the
averaged energy needed (effort) in Wh across all algorithms, terrains, and
paths.

Fig. 7. The cumulative height difference of traveled paths on the left and
the mean of travel time on the right, averaged over all paths and terrains.

correlated with the path length than with the cumulative
height, which means that all algorithms managed to find
more-or-less easily traversable trajectories for the robot.
Looking at the mean standard deviation of roll and pitch

shown in Figure 8 together with traversal time in Figure
7 suggests that taking a smoother path only has a small
negative impact on travel time. Thus, in some cases it might
be more feasible to take a flatter path. It was expected that
the standard 2D costmap-based algorithms would produce a
path with fewer variations as they only use a limited amount
of information, and prefer lower-cost cells.

Fig. 8. The averaged standard deviation roll and pitch across all algorithms,
terrains, and paths.

Unexpectedly, the vanilla RRT∗ algorithm produced a high
cumulative height difference, while also traveling longer.

Proceedings of the Austrian Robotics Workshop 2025

https://doi.org/10.34749/3061-0710.2025.15 95
Creative Commons Attribution
4.0 International License

D
ra
ft

This could be explained by the fact that it produces similar
paths to Theta∗, with lots of straight sections, but having
much more of these sections, leading to more unwanted zig-
zag turns. Figure 6 showed that the proposed method actually
consumed about 3% less energy than the next best algorithm.
Taking the standard deviation of yaw, pitch, and roll, and the
cumulative height into account, it can be concluded that it’s
most of the time more efficient to go above a hill than to go
around it if it can be guaranteed that the robot can operate
within its limits.
Until now, the results are promising, especially due to the fact
that the proof-of-concept method already performs well in
the initial version. Unfortunately, a significant disadvantage
of the proposed method is planning time. On average, the
proposed solution returns a path in 7630ms for the given
map size, which is very high in comparison to the 30-300ms
path-return times of the classical 2D search algorithms.
However, looking at the unmodified RRT∗, the planning time
only decreases by about 900ms to 6725ms. This shows that
the added cost calculations using the robot’s footprint have
a relatively low impact on the planning time. Thus, the
implementation has been determined to be inefficient, and
as a next step, the solution will be re-implemented using
the popular Open Motion Planning (OMPL) [15] library to
improve speed.
In order to visualize the advantage of the proposed method
even better, a map with a single ramp with a slope of 29
degrees has been made. This is above the set worst- case cost
factor of the classical algorithms, and thus all of them fail to
provide a path to the goal. However, the proposed solution
can find a skewed path that stays within the bounds of the
robot, as the slope is less steep from a skewed perspective.
This is shown in Figure 9.

Fig. 9. Planning skewed to the slope makes the slope less steep.

VI. SUMMARY AND OUTLOOK

The evaluations provided us with valuable information
regarding planning on uneven terrain. It has been shown that
using 2.5D information natively is beneficial for planning in
off-road scenarios by evaluating different metrics recorded
during testing. It has also been concluded, that the proposed
approach is less computationally efficient than methods using
standard search-based algorithms on a 2D costmap. Thus,
there is still work to be done for the developed 2.5D-based
planner to be usable in real-time with a real robot. For the
2D approach one of the most basic and widely used methods
has been used. It compresses the terrain data into a slope
map, which results in the least amount of loss of information
about the environment. In reality, the slope map could be

extended by additional traversability costs to also account for
different surface types and roughness levels. Meanwhile, the
proposed method using 2.5D data directly has great potential
of combining the cost calculation on a 2.5D surface with
other types of map layers to make planning more efficient. As
the proposed method is only a proof-of-concept solution, it
still requires more work to achieve a better quality outcome.
Path executions failed in most cases due to turning on slopes.
In future work, a converted slope map could be taken into
account by the controller to restrict turning on steep slopes,
similar to the paper [14], which would mitigate this issue.

REFERENCES

[1] “ANYbotics — Autonomous Legged Robots for Industrial Inspec-
tion — anybotics.com,” https://www.anybotics.com/, [Accessed 23-12-
2024].

[2] “Clearpath Robotics: Mobile Robots for Research & Development —
clearpathrobotics.com,” https://clearpathrobotics.com/, [Accessed 02-
01-2025].

[3] Noise Texture Node - Blender 4.3 Manual — docs.blender.org.
https://docs.blender.org/manual/en/latest/render/shader nodes
/textures/noise.html. [Accessed 05-01-2025].

[4] M. C. Blaise Gassend, “dynamic reconfigure - ROS Wiki —
wiki.ros.org,” http://wiki.ros.org/dynamic reconfigure, [Accessed 11-
01-2025].

[5] J. H. Dongho Kang, “SimBenchmark — leggedrobotics.github.io,”
https://leggedrobotics.github.io/SimBenchmark/, [Accessed 30-12-
2024].

[6] D. H. Eitan Marder-Eppstein, David V. Lu, “costmap 2d - pack-
age summary,” http://wiki.ros.org/action/info/costmap 2d?action=info,
2018, [Accessed 22-12-2024].

[7] T. R. Etherington, “Perlin noise as a hierarchical neutral landscape
model,” Web Ecol., 22, 1–6, 2022.

[8] D. D. Fan, K. Otsu, Y. Kubo, A. Dixit, J. Burdick, and A.-
A. Agha-Mohammadi, “Step: Stochastic traversability evaluation
and planning for risk-aware off-road navigation,” 2021. [Online].
Available: https://arxiv.org/abs/2103.02828

[9] A. Farley, J. Wang, and J. A. Marshall, “How to pick a mobile robot
simulator: A quantitative comparison of coppeliasim, gazebo, morse
and webots with a focus on accuracy of motion,” Simulation Modelling
Practice and Theory, vol. 120, p. 102629, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1569190X22001046

[10] I. E. Gargano, K. D. von Ellenrieder, and M. Vivolo, “A survey of
trajectory planning algorithms for off-road uncrewed ground vehicles,”
in Modelling and Simulation for Autonomous Systems, J. Mazal,
A. Fagiolini, P. Vasik, F. Pacillo, A. Bruzzone, S. Pickl, and P. Stodola,
Eds. Cham: Springer Nature Switzerland, 2025, pp. 120–148.

[11] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng, “Ros: an open-source robot operating system,”
vol. 3, 01 2009.

[12] E. Rohmer, S. P. N. Singh, and M. Freese, “Coppeliasim (formerly
v-rep): a versatile and scalable robot simulation framework,” in Proc.
of The International Conference on Intelligent Robots and Systems
(IROS), 2013, ”www.coppeliarobotics.com”.

[13] C. Rösmann, F. Hoffmann, and T. Bertram, “Timed-elastic-bands for
time-optimal point-to-point nonlinear model predictive control,” in
2015 European Control Conference (ECC), 2015, pp. 3352–3357.

[14] L. Sharma, M. Everett, D. Lee, X. Cai, P. Osteen, and J. P.
How, “Ramp: A risk-aware mapping and planning pipeline for
fast off-road ground robot navigation,” 2023. [Online]. Available:
https://arxiv.org/abs/2210.06605

[15] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, December 2012, https://ompl.kavrakilab.org.

[16] R. Takemura and G. Ishigami, “Traversability-based rrt * for planetary
rover path planning in rough terrain with lidar point cloud data,”
Journal of Robotics and Mechatronics, vol. 29, pp. 838–846, 10 2017.

[17] L. Wellhausen and M. Hutter, “Artplanner: Robust legged robot
navigation in the field,” Field Robotics, vol. 3, no. 1, p. 413–434,
Jan. 2023. [Online]. Available: http://dx.doi.org/10.55417/fr.2023013

Proceedings of the Austrian Robotics Workshop 2025

https://doi.org/10.34749/3061-0710.2025.15 96
Creative Commons Attribution
4.0 International License

