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LiDAR-Based Ground Segmentation with Structured Point Clouds for
Multi-Sensor AMRs*

Hamid Didari1 and Gerald Steinbauer-Wagner1

Abstract—LiDAR-based perception is a popular component
of autonomous mobile robots (AMRs) for obstacle avoidance
and traversable area detection. Traditional ground segmenta-
tion approaches, such as ring-based methods, often assume a
fixed sensor placement and may struggle in multi-LiDAR or
tilted sensor configurations. To overcome these limitations, we
propose a novel segmentation approach based on the organized
point cloud representation, which preserves the spatial arrange-
ment of LiDAR data in a structured 2D format. Our method
first organizes the raw point cloud into a structured array,
ensuring direct neighborhood accessibility without additional
spatial searches. We then use a rolling window over the array
to estimate surface normal vectors. Ground segmentation is
performed iteratively by classifying normal vectors based on
orientation and height consistency. A likelihood approach is
further utilized to segment points by assigning them to their
corresponding normal vectors. Furthermore, we evaluate our
method through experimental tests on a real-world multi-
LiDAR AMR in five different scenarios within unstructured
environments, achieving an average accuracy of 0.939.

Index Terms—Mobile Robots, Scene Understanding, Off-
Road Navigation

I. INTRODUCTION

The deployment of autonomous mobile robots (AMRs)
in logistics has become increasingly prevalent due to their
potential to enhance productivity and reduce costs. Research
by Keith and La [10] highlights that AMRs improve ef-
ficiency by minimizing manual labor in repetitive tasks,
leading to lower operational costs and increased through-
put. Similarly, a multiple case study by Grover et al. [7]
identifies AMRs as key enablers of digital transformation
in Industry 4.0 warehouses, where they contribute to cost
reduction through efficient material handling and workflow
optimization. Economic analyses further indicate that AMRs
can lead to substantial long-term savings. A study by Zhang
et al. [11] evaluates the return on investment (ROI) of AMR
deployment, showing that companies recover their initial
investment due to reduced labor expenses and increased
productivity.
Despite their benefits, widespread AMR adoption in dy-

namic and unstructured environments faces several chal-
lenges, with local perception being one of the most critical.
AMRs rely on LiDAR, cameras, and radar to perceive their
surroundings, but sensor noise, occlusions, and environmen-
tal variations pose challenges. Among various perception
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technologies, LiDAR-based perception is particularly effec-
tive in enabling AMRs to navigate complex environments
by accurately detecting obstacles and identifying traversable
areas. By generating high-resolution 3D point clouds, Li-
DAR sensors provide a precise spatial representation of the
surroundings, allowing robots to differentiate between safe
paths and potential hazards. This capability is critical for
obstacle avoidance and traversable area detection, especially
in outdoor and dynamic environments where other sensors
may struggle due to lighting variations.
Ground segmentation is a fundamental task in LiDAR-

based perception, facilitating accurate obstacle detection and
navigation. Traditional methods often employ geometric ap-
proaches, such as plane fitting and elevation thresholding, to
distinguish ground from non-ground points. However, these
methods may struggle with complex terrains and require
manual parameter tuning. To overcome these challenges,
modern approaches integrate probabilistic models and ma-
chine learning techniques. Markov Random Fields (MRF)
has been used to model spatial relationships between points,
improving segmentation accuracy in uneven terrains [15].
Additionally, deep learning-based methods, such as Convolu-
tional Neural Networks (CNNs), can learn complex patterns
in point cloud data, enabling robust ground segmentation in
diverse environments [14].
A more recent and efficient approach is ring-based ground

segmentation, such as Patchwork, which leverages the struc-
ture of LiDAR point clouds to classify ground and obstacles
[12]. Patchwork progressively segments the ground from
near to far distances using LiDAR’s ring structure, improv-
ing computational efficiency and robustness in unstructured
outdoor terrains. However, a major limitation of Patchwork
and many deep learning-based segmentation methods is the
assumption that the LiDAR sensor is mounted horizontally
at the robot’s center. In reality, AMRs may use multiple
LiDARs positioned at different angles or orientations—such
as tilted or vertically mounted sensors—to enhance 3D
coverage.
To overcome this limitation, we developed a segmentation

approach based on the organized point cloud representation
instead of partitioning space into rings. An organized point
cloud is a structured representation where LiDAR points
are stored in a 2D array format, preserving their spatial
arrangement as captured by the sensor. This contrasts with
an unstructured point cloud, where points are stored in a
random order without inherent neighborhood relationships.
The advantage of an organized point cloud is that each
point’s neighboring points are directly accessible using fixed
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indices.
By leveraging this structure, our method ensures that par-

titioning is independent of the LiDAR setup, making it more
adaptable to different sensor configurations. We compute
the normal vector for each partition and fit a likelihood
model to the points within it. Since the robot is assumed
to be on a traversable surface, partitions with a zero mean
height are classified as ground. From these initial ground
partitions, we iteratively expand to neighboring partitions
that are unlabeled. A partition is labeled as ground if its
surface inclination angle is below a predefined threshold and
its height difference from a known ground partition is within
acceptable limits.
Furthermore, we use the likelihood model of each normal

vector to classify points in the point cloud. This structured
approach allows us to determine which normal vector a
given point belongs to, even when neighboring points in the
organized point cloud are not necessarily part of the same
surface. This is because neighboring in the organized point
cloud is based on the sensor’s capturing position rather than
the actual 3D spatial arrangement.
The structure of the remaining sections of the paper

is as follows: the next section gives an overview of the
related work, followed by Section III, which provides details
on the developed method. In the consecutive section, the
evaluation and results are presented, and lastly, in Section
V we conclude the paper with drawn conclusions and future
work.

II. RELATED WORK

There are different approaches for point cloud segmen-
tation. One approach works directly on the point cloud, as
demonstrated by Diaz et al. [4], who proposed two methods
for ground segmentation: Normal Vector-Based Filtering,
which utilizes KNN, PCA, and Naı̈ve Bayes classification,
followed by RANSAC plane fitting to refine ground points;
and Voxel-Based Filtering, which structures the point cloud
into 3D voxels, applies height-based filtering, 3D adja-
cency segmentation, and statistical refinement. While the
first method achieved slightly higher accuracy, the voxel-
based approach was faster, making it the preferred choice for
real-time applications. Another notable approach is the fast
segmentation method proposed by Himmelsbach et al. [8],
designed for autonomous ground vehicles. Their method
splits the segmentation process into two steps: local ground
plane estimation and fast 2D connected components labeling.
This strategy efficiently processes large, unordered 3D point
clouds by first separating ground and non-ground points
using local plane fitting and then clustering the remain-
ing points based on spatial connectivity. Golovinskiy and
Funkhouser [6] introduced a min-cut-based segmentation
method that formulates point cloud segmentation as a graph
optimization problem. Their approach constructs a k-nearest
neighbors graph, applies a background penalty function,
and enforces foreground constraints to achieve robust seg-
mentation. The segmentation is determined by solving a
global min-cut optimization, which minimizes the cost of

separating object points from the background. The method
supports both automatic and interactive segmentation and is
particularly effective in complex urban environments where
object-background separation is challenging. More recently,
Huang et al. [9] introduced a coarse-to-fine MRF-based
approach to improve ground segmentation accuracy while
maintaining computational efficiency. Their method first per-
forms coarse segmentation using local feature extraction to
classify points into high-confidence obstacle, ground, and
unknown points. The MRF model is then constructed using
the coarsely segmented data, eliminating the need for prior
knowledge. The graph cut algorithm minimizes the MRF
model to refine segmentation results. Additionally, deep
learning-based approaches have gained traction for efficient
and accurate segmentation of LiDAR point clouds. One such
method is SalsaNet, introduced by Aksoy et al. [1], which
is an encoder-decoder-based deep learning model designed
for fast road and vehicle segmentation. SalsaNet processes
LiDAR point clouds in a Bird-Eye-View (BEV) projection
and utilizes ResNet blocks in the encoder for efficient feature
extraction. It also incorporates a class-balanced loss function
to address the imbalance between road and vehicle classes
in autonomous driving scenarios. Building upon SalsaNet,
Cortinhal et al. [3] introduced SalsaNext, an improved net-
work for semantic segmentation of LiDAR point clouds
with uncertainty estimation. SalsaNext extends SalsaNet by
incorporating a novel context module, a residual dilated
convolution stack, and a pixel-shuffle layer in the decoder to
improve segmentation accuracy while maintaining efficiency.
Additionally, SalsaNext applies Bayesian treatment to esti-
mate epistemic and aleatoric uncertainties, making it a robust
choice for safety-critical applications such as autonomous
driving.

III. METHOD

To overcome the limitations of ring-based segmentation
approaches, such as the assumption that the LiDAR is
mounted horizontally at the center of the robot, and to
support multi-LiDAR configurations, we propose a method
that utilizes the organized point cloud representation instead
of partitioning the space into concentric rings. Our approach
arranges each LiDAR data into a structured array, Rm×n×3,
where m and n represent the sensor’s vertical and horizontal
resolution, respectively. This format preserves the spatial
arrangement of points as captured by the sensor, with each
cell storing its corresponding (x,y,z) coordinates. By main-
taining this structured representation, we eliminate the need
for a kd-tree [2] to find neighboring points when computing
normal vectors. Traditional kd-tree search has a complexity
of O(logN) for nearest neighbor queries, where N is the
number of points in the cloud. In contrast, our structured
representation enables direct access to neighboring points in
constant time O(1), reducing computational overhead. The
segmentation pipeline consists of the following steps: (1)
finding neighboring points based on their indices in the 2D
structured array and removing outliers for each LiDAR, (2)
estimating normal vectors, (3) classifying normal vectors, (4)
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Fig. 1. Segmentation Pipeline: First, for each LiDAR, points are sorted into a structured 2D array. Then, normal vectors are estimated and labeled,
followed by assigning points to their corresponding normal vectors.

assigning labels to the points using Likelihood Estimation,
and (5) merge the labeled points from different LiDARs
into one. A high-level overview of the pipeline is shown
in Figure 1.

A. Rolling Window
Given an array where each cell corresponds to a point

P ∈ Rm×n×3, we use a rolling window instead of fixed
partitioning. This technique ensures that each point’s local
neighborhood is dynamically considered, leading to better
spatial consistency and more accurate normal estimations. A
rolling window of size w×w is defined as:

Wi, j =
{
pu,v

∣∣∣ i− w
2
≤ u≤ i+

w
2
, j− w

2
≤ v≤ j+

w
2

}
. (1)

Since being in the same window does not necessarily
imply that all points belong to the same physical surface,
we first apply an outlier removal step. Given a point p =
(x,y,z) ∈Wi, j, we define its radial distance as:

dp =
√
x2+ y2+ z2. (2)

A point is considered an outlier and removed if:

|dp− d̄wi, j|
d̄wi, j

> τd , (3)

where d̄wi, j is the mean distance of all points in Wi, j, and
τd is a predefined threshold controlling the allowed deviation.

B. Normal Estimation
For each window Wi, j, we estimate the surface normal

vector nwi, j by fitting a plane using PCA. Given a local
set of k neighboring points Xwi, j = {p1,p2, . . . ,pk} from the
window, the normal vector nwi, j is computed as:

nwi, j = argmin
n ∑

p∈Xwi, j

(n · (p− p̄wi, j))
2, (4)

where p̄wi, j is the centroid of the points in Xwi, j .
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C. Ground Classification

Since the robot operates on a traversable surface, each wi, j
with a mean height h̄wi, j close to zero (in the robot’s base
frame) is initially classified as ground:

Gwi, j =

{
1, if |h̄wi, j −hr|< εh,
−1, otherwise.

(5)

Here, Gwi, j = 1 indicates that the region is labeled as
ground, while Gwi, j =−1 denotes an unknown classification.
hr represents the reference ground height, and εh is a
predefined height tolerance threshold.
Next, we apply an iterative expansion strategy. For each

labeled ground window wi, j, we iteratively check its neigh-
boring window wm,n and classify it as ground if:

|h̄wm,n − h̄wi, j |< δh and θm,n < θthresh, (6)

where wm,n is a neighbor of wi, j, δh is the allowed height
difference between neighboring window, and θm,n is the
surface inclination angle computed as:

θm,n = cos−1(nm,n · z), (7)

with z being the global vertical unit vector. This process
is repeated iteratively until no new windows are labeled
as ground. Finally, any remaining unlabeled windows are
classified as non-ground.

D. Point Labeling Using Likelihood

After estimating the normal vectors and labeling the
windows, we use a likelihood approach to estimate whether
a given point belongs to a particular surface. This is particu-
larly useful for correctly classifying points that are not direct
neighbors in the 2D array but belong to the same physical
surface due to edge continuity.
To achieve this, we model the likelihood of a point p

belonging to the surface associated with the normal vector
nwi, j as:

L(p | nwi, j) =
1√
2πσ2

exp

(
−
(dp,wi, j)

2

2σ2

)
, (8)

where dp,wi, j is the perpendicular distance of the point
p from the plane defined by the normal vector nwi, j , and
σwi, j represents the standard deviation of distances for points
within wi, j.
The perpendicular distance is computed as:

dp,wi, j = (p− p̄wi, j) ·nwi, j , (9)

where p̄wi, j is the centroid of wi, j.
A point p is classified as belonging to the surface asso-

ciated with normal vector nwi, j if its likelihood L(p | nwi, j)
exceeds a predefined threshold τL.
To assign labels to individual points, we compute the

likelihood of each point belonging to different windows
and assign it the label of the window that maximizes the
likelihood. Given a point p, its assigned label is:

Fig. 2. The experimental robot setup equipped with two 32-layer Hesai
LiDARs.

ℓ(p) = argmax
wi, j

L(p | nwi, j). (10)

This approach ensures that each point is assigned to
the most probable surface, leading to more consistent and
accurate segmentation.

IV. RESULTS

AMRs are deployed in various environments, necessitating
different LiDAR configurations based on the specific appli-
cation. For instance, autonomous vehicles often utilize high-
resolution 128-layer LiDARs, like in the KITTI dataset [5],
to achieve a comprehensive 360-degree view. In contrast, our
application involves operation in unstructured environments,
where dense point cloud coverage in front of the robot
is crucial for distinguishing traversable and non-traversable
slopes. To achieve this without relying on an expensive
128-layer LiDAR, we employ two 32-layer Hesai LiDARs,
mounted on the front left and right of the robot. This
configuration enhances the density of LiDAR points in the
robot’s immediate path. The experimental robot setup and
LiDAR configuration are illustrated in Figure 2.
To assess the performance of the developed method, we

compute error metrics across five different scenarios, includ-
ing slopes, unstructured environments, and campus areas,
as shown in Figure IV, and compare them to Patchwork
[12]. Additionally, we use Label Cloud [13] to manually
annotate points in the point cloud. In the following section,
we introduce the error metrics and evaluate the performance
of the developed method across these five scenarios.

A. Error Metrics

To quantitatively evaluate the performance of our method,
we employ five metrics: Precision, Recall, F1 score, Accu-
racy, and Coverage. These metrics assess the classification
performance based on the number of correctly and incor-
rectly classified points.
Let the number of True Positives (TP), True Negatives

(TN), False Positives (FP), and False Negatives (FN) be
denoted as NTP, NTN, NFP, and NFN, respectively. The eval-
uation metrics are defined as follows:

• Precision (Positive Predictive Value): measures the pro-
portion of correctly identified positive instances among
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Fig. 3. Illustration of the ground segmentation process. (a) environment of the scenario. (b) raw LiDAR point cloud with colors representing point height.
(c) extracted normal vectors and classification results, distinguishing segmented ground (green) and non-ground (red) regions. (d) final segmented point
cloud, where green points are labeled as ground and red points as non-ground. Scenario 1 and 3 feature flat ground, scenario 2 includes a slope in front
of the robot, scenario 4 depicts a road with a ditch on the right side, and scenario 5 represents an off-road area with varying slopes.

all predicted positive instances.

Precision=
NTP

NTP+NFP
(11)

• Recall (Sensitivity or True Positive Rate): measures the
proportion of correctly identified positive instances out
of all actual positive instances.

Recall=
NTP

NTP+NFN
(12)

• F1 Score: the harmonic mean of Precision and Recall,
providing a balanced measure of model performance,
especially in cases of class imbalance.

F1 =
2 ·NTP

2 ·NTP+NFP+NFN
(13)

• Accuracy: measures the overall proportion of correctly
classified instances out of all instances.

Accuracy=
NTP+NTN

NTP+NTN+NFP+NFN
(14)

• Coverage: measures the proportion of labeled points
among all data points.

Coverage=
NTP+NTN+NFP+NFN

Ntotal
(15)

A high Precision indicates fewer false positives, while a
high Recall suggests fewer false negatives. The F1 Score
provides a trade-off between these two metrics, and Accu-
racy gives an overall measure of classification correctness.
Coverage ensures an assessment of how much of the dataset
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is labeled. This measure also depends on the sensor setup;
for instance, in our setup, since the sensor is installed tilted,
as we move farther from the sensor, the density of points
in an area becomes lower and lower, making it difficult to
calculate normal vectors. These metrics collectively provide a
comprehensive evaluation of the segmentation performance.

B. Performance Evaluation

One of the key aspects of evaluating our method is the
coverage of labeled points, which directly impacts segmen-
tation accuracy. Labeling a point requires the assignment of
a normal vector, but in some cases, this is not feasible. For
instance, points that are farther from the LiDAR sensor tend
to have larger spatial gaps, making it challenging to compute
a reliable normal vector. Additionally, points in high-variance
regions, such as those affected by vegetation or irregular
surfaces, may lack sufficient neighboring points to form a
well-defined surface. In such cases, points remain unlabeled
due to insufficient data.
The results indicate that scenarios with a higher presence

of trees, such as Scenario 1, tend to have a lower coverage
value, as a greater proportion of points do not belong to
distinct, continuous surfaces. Conversely, environments with
fewer trees lead to higher coverage. On average, across the
five evaluated scenarios, our method achieves a coverage
value of 0.897, as detailed in Table I. PatchWork shows
better coverage since it uses the entire point cloud for
labeling rather than processing each LiDAR separately. It
also performs better in scenarios with fewer slopes. Overall,
while PatchWork achieves higher coverage, our method
demonstrates better average performance across the five
scenarios.

Scenario Coverage Accuracy Precision Recall F1 Score
Ours Patchwork Ours Patchwork Ours Patchwork Ours Patchwork Ours Patchwork

1 0.749 0.972 0.84 0.912 0.828 0.898 0.843 0.914 0.834 0.904
2 0.907 0.961 0.971 0.925 0.892 0.777 0.971 0.92 0.930 0.820
3 0.920 0.981 0.952 0.971 0.953 0.972 0.951 0.970 0.952 0.971
4 0.962 0.926 0.970 0.921 0.955 0.907 0.970 0.921 0.962 0.913
5 0.949 0.956 0.961 0.951 0.948 0.938 0.960 0.950 0.955 0.945

Avg 0.897 0.959 0.939 0.936 0.915 0.898 0.939 0.935 0.927 0.911

TABLE I
PERFORMANCE METRICS COMPARISON: OURS VS. PATCHWORK [12]

The segmentation method demonstrates high accuracy
across different environments, as indicated by the average
accuracy of 0.939 and an F1-score of 0.927. These values
suggest that the approach consistently distinguishes ground
points from non-ground points with minimal misclassifica-
tions. The average precision of 0.915 indicates that false
positives were minimized, meaning non-ground points were
rarely misclassified as ground, while the Recall (0.939 avg.)
confirms that most ground points were correctly identified.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a LiDAR-based ground seg-
mentation method that efficiently preserves spatial structure
by using an organized point cloud, making it adaptable to
different sensor configurations. By directly accessing neigh-
boring points, we extract normal vectors and classify them as

ground or obstacles. Furthermore, we assign points to normal
vectors using a likelihood-based approach. Experimental
evaluations across five diverse scenarios showed an average
accuracy of 0.939 and an F1-score of 0.927, demonstrating
its reliability in distinguishing ground from non-ground
points. The method also adapts well to unstructured terrains
and multi-LiDAR configurations, proving useful for real-
world robotic navigation.
One limitation of our work is that we process each point

cloud separately and do not consider the overlap between
point clouds. This overlap can be addressed in future work by
incorporating LiDAR transformations relative to each other.
By doing so, we can directly access local neighboring points
from multiple LiDARs, improving segmentation accuracy
and consistency.
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