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Multi-Waypoint Path Planning and Motion Control for Non-holonomic
Mobile Robots in Agricultural Applications

Mahmoud Ghorab and Matthias Lorenzen

Abstract—There is a growing demand for autonomous mo-
bile robots capable of navigating unstructured agricultural
environments. Tasks such as weed control in meadows require
efficient path planning through an unordered set of coordinates
while minimizing travel distance and adhering to curvature
constraints to prevent soil damage and protect vegetation. This
paper presents an integrated navigation framework combining
a global path planner based on the Dubins Traveling Salesman
Problem (DTSP) with a Nonlinear Model Predictive Control
(NMPC) strategy for local path planning and control. The
DTSP generates a minimum-length, curvature-constrained path
that efficiently visits all targets, while the NMPC leverages
this path to compute control signals to accurately reach each
waypoint. The system’s performance was validated through
comparative simulation analysis on real-world field datasets,
demonstrating that the coupled DTSP-based planner produced
smoother and shorter paths, with a reduction of about 16%
in the provided scenario, compared to decoupled methods.
Based thereon, the NMPC controller effectively steered the
robot to the desired waypoints, while locally optimizing the
trajectory and ensuring adherence to constraints. These findings
demonstrate the potential of the proposed framework for
efficient autonomous navigation in agricultural environments.

Index Terms—Motion Planning and Control, Agricultural
Robots, Dubins Traveling Salesman Problem, Model Predictive
Control.

I. INTRODUCTION

Autonomous navigation in unstructured agricultural en-
vironments, such as meadows, poses significant challenges
due to unpredictable terrain, the non-holonomic system dy-
namics of many mobile robots, and the possible presence
of both static and dynamic obstacles [15]. An ecological
weed control system is a prime application where efficient
navigation is crucial, enabling the reduction of herbicide
use and minimizing human intervention. In the considered
application, the process begins by selecting a geo-fence
that defines the field’s safety boundaries, ensuring the robot
operates within a designated area. Next, the target weeds
are autonomously detected and mapped during a scanning
phase. Once the scanning and mapping are complete, the
robot is tasked with navigating to the identified weeds and
eliminating them using a mechanical weed removal tool,
avoiding the use of chemical herbicides. This last phase is
the primary focus of this work, where the proposed DTSP-
based global path planner, as well as the NMPC local path
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planner and waypoint-following controller are integrated to
efficiently guide the robot to each detected weed, while
considering the different robot and environmental constraints.
However, the order in which the targets should be visited

is not determined a priori. Hence, the objective of the global
path planner is to generate a feasible path of minimum
length that efficiently visits all the targets. The problem
of determining the order of waypoints to minimize travel
distance is typically formulated as an Euclidean Traveling
Salesman Problem (ETSP). However, solving the ETSP alone
does not consider the vehicle’s non-holonomic constraints or
environmental constraints, such as avoiding damage to soil
and healthy grass by preventing arbitrarily sharp turns in
the path. Therefore, the planner has to consider curvature
constraints, by generating a minimum length path making
use of Dubins curves instead of straight line segments. This
formulation, known as the Dubins Traveling Salesman Prob-
lem (DTSP), extends the classical ETSP to non-holonomic
vehicles with a minimum turning radius constraint [20].
While the DTSP based planner provides a feasible global

path to guide the robot towards each waypoint, a local
planner and controller is essential for ensuring safe and adap-
tive navigation in dynamic environments and computing the
necessary control input. The presence of static obstacles and
dynamic agents, such as animals, human workers or other
robots operating in the field, requires real-time local path
replanning. To this end, Nonlinear Model Predictive Control
(NMPC) is employed as both the local path planner and
waypoint following controller within the same framework.

A. Related Work

Various formulations and extensions of the DTSP and
NMPC have been presented in the literature, each with its
own advantages and trade-offs. Selecting the right com-
bination of DTSP and NMPC formulations is crucial for
achieving efficient and reliable navigation in agricultural
environments. The choice directly impacts the optimality of
the generated paths, the overall motion control objectives,
and the ability to meet specific task requirements while
adhering to overall system’s constraints.
Approaches to solving DTSP primarily differ in how they

determine the ordering of waypoints and compute the asso-
ciated orientations. These differences influence the accuracy
of the near optimal solution, and the computational effort.
Similarly, NMPC formulations vary in terms of cost func-
tion design, constraints handling, and real-time performance,
making the selection process highly application-dependent.
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This work emphasizes the importance of choosing the
most suitable DTSP and NMPC formulations tailored to
agricultural applications, balancing global path feasibility,
motion planning adaptability, and considering real-world
operational constraints.
1) DTSP-based Global Path Planning: In [3] Dubins

introduced a method for determining the shortest path in a
2D space, given curvature constraints as well as the entry and
exit orientations between two points as input. The resulting
path consists of a combination of straight line segments
and arcs with radii that adhere to the vehicle’s curvature
constraints.
The DTSP was first introduced by [20]. In this extension

of the classical TSP, the path connecting any two points must
be a Dubins curve and two curves that meet at the same point
must share the same orientation.
The core distinctions between methods addressing the

DTSP lie in how they determine the ordering of the way-
points and calculate the orientations associated with the
points. Interested readers are referred to the comprehensive
survey [13] for a detailed review of the various routing
methods.
Existing literature mostly adopted a decoupled approach

for route generation [20], [12], [18], [14]. Thereby, first,
the visiting sequence is determined solving the ETSP. Then,
the vehicle’s orientation at each point is defined, for ex-
ample, using the Alternating Algorithm (AA) [20]. Finally,
the waypoints are connected with Dubins curves. However,
relying solely on the Euclidean distance metric to define the
visit order does not necessarily yield efficient results when
using Dubins curves for path generation. This approach can
lead to excessive circular maneuvers, especially in dense
waypoint configurations typical of autonomous weed control
applications. Since the optimization of waypoint coordinates
and headings is inherently coupled, decoupling them com-
promises optimality [23]. As a result, a tour based solely
on the ETSP ordering cannot achieve an approximation ratio
better than O(n) (i.e., the best solution is within a factor of
n of the optimal solution) see [17].
In the coupled approach, the sequence is determined by

directly using the lengths of the Dubins curves between pairs
of points. However, the main challenge here is to find the
right mechanism to determine the entry and exit orientations
without even having a predefined sequence of points. In [10],
the orientations of all points are initially set to zero (or
a fixed random value), and all interconnecting curves are
calculated and connected to form a complete graph. An
instance of the Asymmetric TSP (ATSP) is then solved to
find the shortest path in this graph. This method was later
extended to include a complete heading discretization [9].
The technique involves selecting a finite set of k possible
headings at each waypoint. A graph is created with n clusters,
each representing a waypoint and containing k nodes that
correspond to different headings. Subsequently, the Dubins
distance between configurations of node pairs from different
clusters is computed. Finally, a tour through all clusters, con-
taining exactly one point per cluster, is then determined. A

logarithmic approximation ratio O(log(n)) for this ATSP can
be achieved by directly solving the problem using available
algorithms implementations, such as those described in [7],
[5], [8].
In both DTSP formulations and most global planners in

general, solutions are computed under tight time constraints,
often resulting in suboptimal paths based on simplified
models. Consequently, there is considerable room for im-
provement by integrating appropriate motion planning and
control systems to further locally optimize the global path.
2) NMPC-based Motion Planning: The fundamental prin-

ciple of MPC is to use the system’s model to forecast
its future behavior and optimally adjust control actions by
solving a constrained optimization problem over a receding
horizon at each sampling time [19], [6]. By minimizing a
cost function that incorporates possible nonlinear multi-input
multi-output (MIMO) system dynamics along with state and
input constraints, NMPC has proven to be a promising
approach for various applications, including stabilization,
tracking, and motion planning of mobile robots in unstruc-
tured and dynamic environments [16], [2], [22], [11].
In automated weed control applications, the primary ob-

jective is for the robot to reach and stop at each designated
waypoint. This is ensured by making the state corresponding
to the desired pose a stable attractor of the feedback control
loop. A conventional approach to ensure this with NMPC
involves enforcing terminal costs and/or terminal region
constraints near the desired set-point. However, when the
set-point is located at relatively long distance from the
robot, the prediction horizon required becomes prohibitively
long for practical applications. An alternative strategy is
to reformulate the problem as one of path following by
generating a global path that connects all waypoints and then
following this path piece-wise [4], [25], [16].
In the considered application, as in many other appli-

cations, the goal is to reach the target while satisfying
constraints rather than strictly following a specific path.
As noted in Section I-A.1, global planners often yield
suboptimal paths when computed in finite time, particularly
under kinematic and dynamic constraints. Therefore, exactly
following these paths can complicate motion control and
make it impossible when real-time obstacle avoidance is
required. Instead, a flexible approach that allows the motion
planner to dynamically optimize the global path and find
shortcuts is preferred.
A novel NMPC formulation, proposed in [11], guaran-

tees convergence to a desired target while ensuring closed-
loop stability, adherence to system constraints, and collision
avoidance with obstacles. The method optimally selects an
artificially generated reference set-point, dynamically ad-
justed along the global reference path, which guides the
robot without requiring strict path following. This artificial
reference is used to define feasible stabilizing terminal con-
straints.
This work adapts and integrates the coupled DTSP for-

mulation from [9] with the NMPC-based motion planner
from [11] to enable an automated, robot-based weed control
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application. The resulting integrated framework addresses
a critical gap in applied research by combining a multi-
waypoint, curvature-constrained DTSP-based global planner
with an advanced NMPC-based local motion planner and
controller tailored for agricultural robots.
The remainder of the paper is organized as follows. Sec-

tion II details the proposed system, explaining the integration
of the DTSP-based global path planner with the NMPC-
based local path planner and waypoint follower. Section III
describes the simulation setup and presents a comparative
analysis of the results. Finally, Section IV concludes the
paper and outlines directions for future work.

II. PROPOSED NAVIGATION AND CONTROL SYSTEM

A. System Overview

The proposed system integrates a two-layer architecture
for autonomous navigation. The global path planner, based
on the coupled DTSP formulation, processes unordered
multi-waypoint coordinates to compute an optimal sequence
of curvature-constrained Dubins paths connecting these way-
points. These paths minimize travel distance while adhering
to curvature constraints tailored specifically for agricultural
applications, where sharp turns can damage the soil and
grass. The NMPC-based local path planning and waypoint
following algorithm utilizes the resulting global Dubins
path to ensure precise convergence to each waypoint while
respecting different system constraints.

B. DTSP Algorithm

Given W waypoints in a 2D space, the DTSP aims to
determine the shortest path that connects all points while
adhering to curvature constraints. Consequently, the path
between any two points should be a Dubins curve, and
the curves meeting at the same point must share the same
orientation.
The following steps present the DTSP routing problem

based on [9]:
1) For each of the W target points, select K candidate

headings (e.g., k 2π
K for k ∈ {0,1, ...,K−1}).

2) Represent each target as a cluster of K nodes, where
each node corresponds to a configuration qi = (pi,θi)
with position p and a candidate heading θ . The total
number of nodes is nK.

3) For each pair of nodes qi and q j that belong to different
clusters (i.e., different targets), compute the Dubins
curve with minimum distance Dρ(qi,q j). This curve
is parameterized by the minimum turning radius ρ ,
defines the cost for traveling from a specific configu-
ration at target i to a different one at target j.

4) Arrange the computed Dubins distances into a cost
matrix M of size N×N, where N = nK.

From the matrix M, one can construct an ordered sequence
QΣ = (qΣ(0),qΣ(1), . . . ,qΣ(N−1)) which represent some per-
mutation Σ of configurations qΣ(i) = (pΣ(i),θΣ(i)) of a com-
plete tour of the mobile robot, after excluding transitions
between configurations within the same target.

Based on this representation, the corresponding objective
function can be formulated as follows:

minimize
θ ,Σ

Lρ(QΣ) (1)

Where the cost function is defined as:

Lρ(QΣ) =Dρ(qΣ(N−1),qΣ(0))+
N−2

∑
i=0

Dρ(qΣ(i),qΣ(i+1)) (2)

C. NMPC Algorithm

The robot’s motion is governed by a discrete-time, nonlin-
ear dynamic system, described by the following difference
equation:

x(n+1) = f (x(n),u(n)), (3)

where f : Rnx ×Rnu → Rnx is a continuous function that
models the system dynamics. Here, x(n) ∈ Rnx represents
the system state, while u(n) ∈ Rnu denotes the control input
at the sampling time tn, where n= 0,1,2, . . . .
The global path Pd generated from the DTSP-based plan-

ner can be represented as a sequence of path segments con-
necting each pair of consecutive waypoint poses as follows:

Pd = (p0, p1, . . . , pW−1), (4)

where W is the total number of waypoints. Each path
segment pw is described as a continuous function:

pw : [0,1] 7→ Rnx , (5)

where pw(0) represents the initial configuration of the path
segment, while pw(1) represents the target configuration.
The following NMPC formulation used in this work was

originally proposed in [11]. This approach ensures that
both constraint satisfaction and convergence to a desired
target can be guaranteed. Unlike traditional path-following
approaches, this method does not require the robot to strictly
follow the reference path pw. Instead, the path only serves
as a guidance mechanism to identify a suitable terminal
constraint, which guarantees that at each control step, the
local solution computed by the NMPC algorithm can be
suitably extended to reach the target pose. This is achieved
by introducing an artificial reference, which serves as an
intermediate target configuration and is optimized within the
NMPC optimization problem.

In the following, the predicted state and control input
trajectories over the finite prediction horizon N are denoted
as x̄(·)∈ X and ū(·)∈U , where X and U represent the set of
admissible states and inputs respectively. These trajectories
are defined as

x̄(·) = (x̄(1), x̄(2), . . . , x̄(N)), (6)
ū(·) = (ū(0), ū(1), . . . , ū(N−1)). (7)

The artificial reference is chosen along the current path
segment pw. With the additional optimization variable s̄ ∈
[0,1] and the path pw, this artificial reference is given by
pw(s̄).
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The MPC cost function is defined by

JN(x0, x̄(·), ū(·), s̄) =
N−1

∑
k=0

ℓ(x̄(k), ū(k))+Vo(s̄), (8)

where the stage cost ℓ : Rnx+nu → R≤0 and offset cost V0 :
[0,1] → R≥0 are positive definite functions. We define the
stage cost

ℓ(x̄(k), ū(k)) = ∥x̄(k)− p(s̄)∥4Q+∥ū(k)∥4R , (9)

where Q and R are positive definite weighting matrices
that penalize the deviation of the predicted states from the
intermediate artificial reference pose and penalize excessive
control effort, respectively.
The offset cost Vo(s̄) ensures that the artificial reference

progresses forward toward the final target pose pw(1) as it
penalizes the distance along the path between the current
artificial reference and the target pose. Is defined by

Vo(s̄) = qs(1− s̄)2, (10)

where qs is a positive weighting scalar that penalizes the
deviation between the final reference index 1 and the current
optimal intermediate artificial reference s̄.
Finally, the NMPC algorithm at each sampling time tn,

n= 0,1,2, . . . , can be described as follows:
1) Measure the state x(n) ∈ X of the robot.
2) Set x0 = x(n), solve the optimal control problem (OCP)

defined by:

minimize
ū(·), s̄

JN(x0, x̄(·), ū(·), s̄) (11a)

s.t. x̄(0) = x0 (11b)

x̄(k+1) = f
(
x̄(k), ū(k)

)
, k ∈ [0, N−1] (11c)

x̄(k) ∈ X , k ∈ [1, N] (11d)
ū(k) ∈U, k ∈ [0, N−1] (11e)
x̄(N) = p(s̄) (11f)

s̄ ∈ [0,1] (11g)

B
(
x̄(k)

)
∩Oi =∅, k ∈ [1, N], i ∈ [1, No] (11h)

3) Denote the obtained optimal solution u∗(·), x∗(·), s∗.
4) Apply the control input u(n) = u∗(0) to the system.
5) Repeat until the robot reaches the final waypoint, then

start over using the next path segment.
General constraints on states and control inputs for non-

linear systems are incorporated into the OCP in the form of
set membership conditions, as defined in (11d) and (11e),
respectively. Furthermore, static obstacle avoidance can be
also considered in the optimization problem by considering
constraints (11h). Where B represents the robot’s footprint,
and Oi denotes the i-th obstacle in the environment.

III. RESULTS

The proposed system is evaluated in a simulated agricul-
tural scenario, where a mobile robot navigates to a set of tar-
get weeds. The results are presented in terms of path planning
and waypoint-following performance metrics, including path

length, target reaching, smoothness, and curvature constraints
adherence. A comparative analysis is conducted between
the proposed DTSP planner with angle discretization and
the decoupled approach based on the Alternating Algorithm
(AA), see Section I-A and [20]. The results demonstrate the
effectiveness of the integrated global planner and NMPC
methods adapted in this work.

A. Simulation Setup
The simulation scenario consists of a 2D field with a set

of target weeds distributed across the area. In this phase, the
global path planner generates a Dubins path that connects
all target weeds in the field, while the NMPC controller
optimizes the robot’s trajectory to reach each detected weed
accurately while adhering to constraints from the robot’s
kinematics and the environment.
After formulating the DTSP and transforming it into an

ATSP, the problem was solved using the LKH optimizer,
which is an effective implementation of the Lin-Kernighan
traveling salesman heuristic [7].
The NMPC problem is symbolically formulated in MAT-

LAB using the CasADi framework [1]. To ensure a smooth
and continuously differentiable path function, the global
Dubins reference path is first sampled at 5 cm intervals and
then converted into a CasADi function, p(s), using CasADi’s
linear interpolation utilities. This function is parameterized
over the normalized domain s ∈ [0,1].
In this agricultural application a differential-driven mobile

robot model as described in [21] is utilized:

ẋ=



ẋ
ẏ
θ̇


=



vcos(θ)
vsin(θ)

ω


 (12)

The robot’s control inputs are defined as u= [v ω]T , where v
and ω represent the linear and angular velocity respectively.
The output states of the robot are given by x = [x y θ ]T ,
which represent the 2D pose of the robot, including its
position (x,y) and orientation θ . This mathematical model
is employed for both the simulation and prediction models,
without taking into account possible process or measurement
noise.
The prediction model is integrated using the fourth-order

Runge-Kutta (RK4) method to compute the state evolution
over each discretization interval. The continuous-time OCP
is discretized via direct multiple shooting, which converts it
into a nonlinear programming (NLP) problem that is then
solved with the Interior Point Optimizer (IPOPT) [24].
The NMPC problem is parameterized by a sampling time

of ∆t = 0.1 seconds and a prediction horizon of N = 20. The
weight matrices are defined as

Q= diag(0.1, 0.1, 0.01),
R= diag(0.1, 1.0),

qs = 104.

The minimum turning radius constraint, required in this
application, is enforced by the inequality constraint

v̄(k)≥ rmin|ω̄(k)|
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which is added to the optimal control problem. Furthermore,
control inputs box constraints

umin ≤ ū(k)≤ umax

are taken into account to limit the robot’s linear and angular
velocity. Finally, to ensure smooth motion, in such agricul-
tural application it is convenient to also consider constraints
on the rate of change of control inputs (i.e., acceleration of
the robot)

∆umin ≤ ū(k)− ū(k−1)≤ ∆umax.

The robot considered in this work has maximum linear
velocity of 0.5 m/s and a maximum angular velocity of 1.9
rad/s. The rate of change constraints are defined as a fraction
of the maximum control values, allowing adaptation based
on operational requirements (e.g., umax/n), where n∈ [1, No]

B. Simulation Results

The test scenario illustrated in Fig. 1 evaluates the per-
formance of the proposed DTSP global path planner (Fig.
1a) against a DTSP planner from the decoupled category
(Fig. 1b), as discussed in Section I-A. This planner utilizes
the Alternating Algorithm (AA) to determine the waypoints
orientations, whereas the DTSP method applied in this work
incorporates 10 angle discretization levels for each waypoint.
Both planners were tested on the same dataset, consisting
of 150 target weeds distributed across approximately 20×60
square meters field, with a vehicle turning radius constraint
of 0.5 meters.
In both cases, the proposed NMPC algorithm was able

to optimize the reference paths and accurately reach each
waypoint, while still respecting the turning radius constraints
required to protect the soil and grass from damage. A steady-
state error of no more than 0.05 meters was achieved at each
target pose.
The proposed DTSP planner presented in Fig. 1a, achieved

a total path length of 323.49 meters, outperforming the
decoupled approach shown in Fig. 1b, which resulted in
a path length of 384.58 meters, i.e. nearly 19% longer.
For reference, the shortest possible path computed by only
solving the ETSP without considering curvature constraints
was 314.20 meters.
As observed in Fig. 1b, the path generated by the DTSP

planner using the alternating algorithm is suboptimal, char-
acterized by numerous loops that are necessary to reach the
next waypoint given the curvature constraints. In contrast,
the proposed DTSP planner with 10 angle discretization
levels, as shown in Fig. 1a, leads to a different order of
the waypoints, allowing for a significantly smoother path.
This path connects all targets with hardly any redundant
loops, which can effectively guide the NMPC towards the
targets. Experiments with angle discretization, starting from
three orientations per waypoint and incrementally increasing,
showed that higher discretization levels generally reduced
path cost but also increased computational time. This trade-
off depends on factors such as the density of targets and the
turning-radius constraints. Furthermore, the benefits of using

a coupled approach quickly grow with a higher target density
and a larger minimum turning radius.
As depicted in Fig. 1, the robot successfully navigates

all target weeds accurately while adhering to curvature
constraints. Thereby the proposed NMPC does not strictly
follow the reference path but locally optimizes the trajectory
based on the NMPC cost function. E.g., to protect the soil,
tight turns are discouraged, leading to wider turns to smooth
out tight turns from the global planner, as long as this
does not significantly increase the path length. On the other
hand, it takes shortcuts by making tighter turns when this
helps to significantly reduce the travel distance. This local
planning behavior of the NMPC can be tuned by adjusting
the prediction horizon length, the cost function weights, and
the allowable turning radius.

IV. SUMMARY AND OUTLOOK

This paper has presented a practical autonomous naviga-
tion framework for non-holonomic mobile robots in agri-
cultural applications. Given target coordinates, the proposed
framework integrates a global path planner based on a
coupled DTSP formulation with an NMPC-based motion
planning and control strategy to generate feasible reference
paths and compute optimal control inputs that satisfy both
the robotic system constraints and the operational demands
of the agricultural environment.
The system’s performance was validated through a com-

parative analysis with a reference path generated by a global
planner based on a decoupled DTSP formulation, demon-
strating the advantages of the applied DTSP approach and its
effectiveness as a reference input for the local motion planner
and controller. By optimally selecting a feasible artificial
reference and corresponding terminal constraint along the
planned path, the NMPC methodology smooths out sharp
turns, identifies efficient shortcuts, and ensures precise way-
point navigation while maintaining overall system stability
under various constraints.
Future research will focus on enhancing local motion plan-

ning by considering complex obstacle scenarios, including
moving humans, animals, other robots and machinery into
the NMPC’s OCP formulation for safe, real-time adaptation
to moving agents. Experimental field validation is planned
under varying terrain conditions to address challenges arising
from process and measurements noise, bridging the gap
between simulation and practical agricultural robotics.
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