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Comparison of neural networks road detection in off-road environments

Jakob Oberpertinger1, Matthias Eder1 and Gerald Steinbauer-Wagner1

Abstract—As unmanned ground vehicles (UGVs) are more
frequently deployed in unstructured environments, there is a
growing need for robust road and terrain detection systems.
The ability to navigate autonomously in challenging terrains
depends on the effectiveness of computer vision models.

Off-road environments encompass rugged terrain, forest
roads, agricultural fields, and more, characterized by dynamic
changes and unpredictable obstacles. UGVs must discern driv-
able ground to enable effective navigation while identifying and
circumventing obstacles in real-time.

This paper investigates different sensor-based and neural
network-driven approaches to address these challenges, fo-
cusing on the critical task of identifying forest roads in off-
road environments. Using different sensors, we assess their
effectiveness in different environmental conditions through a
comprehensive comparative analysis of three neural network
architectures. Our results highlight the strengths and limitations
of different sensor modalities and neural network models. They
provide insight into their performance under adverse conditions
such as overexposed images, complex shadows, and dense
vegetation on forest roads. This research provides valuable
insights into developing robust off-road navigation systems
essential for advancing autonomous ground vehicle technology.

I. INTRODUCTION

New application areas for unmanned ground vehicles
(UGV), such as disaster response or forestry, have led to the
need for safe navigation both on and off the road. Effective
navigation is essential; it requires not only the ability to
identify clear and accessible routes but also the foresight
to avoid potential obstacles. Mastering this skill enhances
safety and ensures a smoother journey every time. However,
research in unstructured environments still lags behind that
in structured environments [9]. Off-road environments for
anmanned ground vehicles (UGVs) present unique chal-
lenges compared to traditional on-road environments. These
environments vary widely, including rugged terrain, forest
roads, agricultural areas, etc. Off-road environments can
experience rapid changes, such as the appearance of lighting
and weather conditions, temporary obstacles, or changes in
terrain conditions. UGVs must be able to adapt in real-time
to meet these dynamic challenges. The absence of clearly
defined routes makes it challenging for an unmanned ground
vehicle (UGV) to navigate to its destination. For a UGV to
find its destination, it must make two important decisions.
Firstly, it needs to detect accessible routes that it can safely
traverse. Secondly, it must detect obstacles so that it can
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safely avoid them. There are many different approaches
to solving these two challenges, using different sensors or
neural network architectures.
Our research focuses on identifying navigable terrain in

off-road environments, essential for safe and efficient navi-
gation in unknown terrain. To address this challenge, we are
undertaking a comprehensive comparison of three different
neural network architectures using a variety of sensors,
including RGB and depth images from stereo cameras and
point clouds from lidar sensors. By exploring the effective-
ness of different sensors, we aim to identify their respective
strengths and limitations. This investigation goes beyond
pure theoretical analysis, as we are carefully testing the limits
of these networks under harsh environmental conditions.
These conditions are characterized by significant challenges
such as fluctuating sunlight, complex shadow patterns, and
dense vegetation. The interplay of sunlight and shadows
poses a significant hurdle for camera sensors and neural
networks, especially if not adequately trained. In addition,
vegetation poses challenges. Forest roads exhibit patches of
grass in the center, which complicates the identification of
navigable pathways.
The remainder of this paper is structured as follows: Sec-

tion II discusses current research topics in path detection in
off-road environments. Section III presents the three different
neural networks evaluated in Section IV. Section V concludes
the paper.

II. RELATED RESEARCH
A. Methods

Unmanned Ground Vehicles (UGVs) operating in off-
road environments require robust road detection systems
for safe and efficient navigation. Recent advancements in
neural networks have significantly improved off-road path
detection capabilities. However, developing a reliable and
stable network for this purpose and selecting the appropriate
sensors poses notable challenges. Ilas [8] outlines the key
sensor technologies UGVs use to make real-time decisions
while monitoring their surroundings. The study explores the
various sensors employed across different environments and
vehicle prototypes, evaluating the advancements in sensor
technology.
Another important technology in off-road road detection

is Convolutional Neural Networks (CNNs). CNNs excel in
capturing spatial hierarchies of features, making them well-
suited for image-based tasks. Researchers have explored
various CNN architectures tailored for off-road scenarios.
The work of Holder et al. [7] focuses on transfer learning,
taking a pre-trained CNN designed for urban road scenes

Proceedings of the Austrian Robotics Workshop 2025

https://doi.org/10.34749/3061-0710.2025.18 109
Creative Commons Attribution
4.0 International License



D
ra
ft

and retraining it to classify off-road scenes. The analysis
involves assessing the network performance during various
stages of training and exploring different levels of prior
training on subsets of off-road data. The study compares
the CNN approach with a traditional feature-driven Support
Vector Machine (SVM) classifier, demonstrating state-of-
the-art results in the challenging problem of off-road scene
understanding.
Neural Networks using Lidar data have become a signifi-

cant advancement in off-road road detection, offering depth
information that allows for a more nuanced understanding
of the environment. Zhong et al. [14] present a method
known as LRTI, designed for identifying drivable areas in
challenging off-road scenes. The complexity of this task
arises from unstructured class boundaries, irregular features,
and noise. By leveraging three-dimensional LiDAR data and
a bird’s eye view (BEV) perspective, LRTI utilizes texture
information derived from LiDAR reflection data. The method
incorporates an instance segmentation network to effectively
learn this texture information, facilitating the identification
of drivable areas. A multi-frame fusion strategy is employed
to improve reliability. LRTI successfully achieves real-time
processing on unmanned ground vehicles (UGVs).
Nate Haddad [5] discusses the challenges of training large

deep learning algorithms due to the need for a substan-
tial training dataset and computing power. Transfer learn-
ing, a method of transferring knowledge from one domain
to another, is introduced as a solution to avoid training
from scratch. The focus is on applying transfer learning to
large encoder-decoder-style deep neural networks, specifi-
cally examining its impact on semantic segmentation tasks.
DeepLabv3+, a state-of-the-art architecture from 2018, is
highlighted for its efficiency in incorporating techniques from
the 2016 Xception model [4].

B. Datasets

Chen Min et al. introduce the first off-road freespace
detection dataset, called the ORFD dataset. Recognizing the
importance of free space detection in autonomous driving
technology, the authors highlight the limitations of existing
deep learning methods, which primarily focus on urban road
environments. To address this gap, they present the ORFD
dataset, comprising 12,198 LiDAR point clouds and RGB
image pairs collected in various off-road scenes, weather
conditions, and light conditions. The authors propose a novel
neural network, OFF-Net, which utilizes a transformer archi-
tecture to integrate local and global information, catering to
the needs of a large receptive field for free space detection.
Peng et al. [10] address the significance of semantic scene

understanding for robust autonomous navigation, particularly
in off-road environments. Acknowledging the reliance of
recent 3D semantic segmentation advancements on extensive
training data, the authors identify a gap in existing datasets,
which are either urban-focused or lack multimodal off-
road data. The authors introduce RELLIS-3D, a multimodal
dataset collected in an off-road setting to bridge this gap. The
paper evaluates state-of-the-art deep learning semantic seg-

mentation models on RELLIS-3D, revealing that the dataset
introduces challenges distinct from urban environments.
The RUGD dataset [13] provides semantic annotations

for unstructured outdoor environments, supporting off-road
autonomous navigation. The dataset from a mobile robot
platform includes video sequences with dense pixel-wise
annotations for terrain classification and obstacle detection. It
features 24 semantic categories, including eight terrain types,
to enhance path planning and localization in environments
lacking structured cues.

III. EVALUATED ARCHITECTURES

In this chapter, we evaluate three previously published
neural network architectures, selected for their diverse input
modalities and relevance to understanding the off-road scene.
Our aim is not to propose new architectures, but to assess
how well existing state-of-the-art segmentation methods gen-
eralize to off-road environments, particularly in challenging
conditions such as forest roads, uneven terrain, and under-
exposed regions. The motivation behind the selection of
these three models is based on their complementary input
representations and processing strategies:

• OFF-Net: Chosen for using surface normal maps and
a transformer-based architecture, offering a high-level
representation of terrain structure. It is designed to lever-
age geometric cues from RGB-D input for improved
scene segmentation.

• DeepLabV3+: A well-established CNN-based model
known for its high segmentation accuracy and strong
performance across various domains. It is particularly
beneficial when working with limited or domain-specific
training data.

• SalsaNext: A LiDAR-based semantic segmentation
model operating directly on 3D point clouds. Its se-
lection allows us to evaluate how pure LiDAR-based
perception compares to image-based methods in un-
structured off-road scenes.

This comparative evaluation’s significance lies in under-
standing these architectures’ behavior under real-world de-
ployment constraints. By testing on our dataset, comprising
RGB imagery, stereo-derived depth, and LiDAR scans col-
lected in diverse environments, we aim to provide practical
insight into each network’s robustness and adaptability. This
evaluation not only identifies the performance boundaries
of each modality but also informs future design decisions
for autonomous navigation systems in GNSS-denied and
visually ambiguous terrain.
In the following section, we will present the concept of the

comparison between the three neural networks, which are:

• Off-Road-Freespace-Detection (ORFD)
• DeepLabv3+
• SalsaNext using RELLIS-3D dataset

The three architectures and their design are presented in
this chapter in detail.
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Fig. 1: The architecture of the OFF-Net [12].

A. Off-Road-Freespace-Detection (ORFD)

This architecture was presented by Chen Min et al. [12]
2022, which addresses the critical aspect of free space
detection in off-road environments for autonomous driving.
The paper presents a novel neural network, OFF-Net, which
uses a transformer architecture to integrate local and global
information, addressing the need for expansive receptive
fields in free-space detection tasks, which are critical for
accurate detection. Figure 1 shows an overview of the
presented OFF-Net. As can be seen in the figure, the network
combines two pieces of information: the RGB image and
the corresponding surface normal. The paper’s authors use
LiDAR point cloud information to calculate the surface
normal for each image. In our case, we calculate the surface
normal from a dense depth image provided by the ZED2
stereo camera1. The transformer encoder can extract the
features from these two pieces of information, and the
transformer decoder predicts the free space. The paper also
presents the dataset they have created for off-road freespace
detection, called the ORFD dataset. The dataset includes off-
road environments such as forests, farmland, and countryside
with different weather conditions. The results demonstrate
that SNE-RoadSeg, utilizing surface normals instead of depth
information, outperforms FuseNet in free space detection.
Furthermore, the newly proposed OFF-Net achieves even
higher accuracy, surpassing FuseNet by 10.8% in F-score
and 16.3% in mIOU. OFF-Net, employing the Transformer
framework, efficiently captures local and global information
while maintaining real-time processing capabilities, 7 times
smaller and 2.7 times faster than SNE-RoadSeg [12].

B. DeepLabV3+

The second architecture, DeepLabv3+, is a simple but
effective decoder module to improve segmentation results.

1https://www.stereolabs.com/docs

Chen et. al. [1] describes this architecture as follows: Mul-
tiple downsampling of CNN results in a smaller feature
map resolution, which leads to lower prediction accuracy
and loss of boundary information in semantic segmentation.
Similarly, aggregating the context around a feature helps to
better segment it, which is achieved with sparse convolutions.
DeepLabv3+ helps to solve these problems. The architecture
can be seen in Figure 2. To save time and in the absence of a
large dataset, we used a pre-trained model from the paper by
Nate Haddad [5], who proposes to extend the application of
a pre-trained DeepLabv3+ model to the challenging domain
of off-road perception. The authors successfully employ
transfer learning techniques using the Yamaha-CMU Off-
Road Dataset for semantic segmentation of off-road images,
showcasing the model’s adaptability and effectiveness in a
different domain. The Yamaha-CMU Off-Road Dataset [11]
consists of 1076 images collected in different environments
using three different sensors. It was labeled using eight
classes (sky, rough trail, smooth trail, traversable grass, high
vegetation, non-traversable low vegetation, and obstacle).
The model takes an image as an input parameter, which is
provided by the ZED2 stereo camera mounted on the front
of the robot.

Fig. 2: The architecture of the Deeplabv3+ [1].

C. SalsaNext

Last, we used a model using LiDAR data as the in-
put parameter. Peng et al. [10] introduced in their pa-
per SalsaNext, an advanced model designed for real-time
uncertainty-aware semantic segmentation of full 3D LiDAR
point clouds. The authors made some major improvements
to the already existing model SalsaNet. Some improvements
are as follows: they replaced the ResNet encoder blocks
with a new residual dilated convolution stack with gradually
increasing receptive fields and added the pixel-shuffle layer
in the decoder. Finally, we implemented a model that utilizes
LiDAR data as its input parameter. In their paper, Peng et al.
[10] introduced SalsaNext, an advanced framework designed
for real-time, uncertainty-aware semantic segmentation of
complete 3D LiDAR point clouds. The authors made sig-
nificant enhancements to the existing SalsaNet model. No-
table improvements include the substitution of the ResNet
encoder blocks with a novel residual dilated convolution
stack that features progressively increasing receptive fields

Proceedings of the Austrian Robotics Workshop 2025

https://doi.org/10.34749/3061-0710.2025.18 111
Creative Commons Attribution
4.0 International License



D
ra
ft

and incorporates a pixel-shuffle layer in the decoder. They
also switch from stride convolution to average pooling and
apply central dropout treatment. To directly optimize the
Jaccard index, they combine the weighted cross-entropy loss
with Lovasz-Softmax loss and inject a Bayesian treatment to
compute the epistemic and aleatoric uncertainties for each
point in the cloud [2]. The improved architecture can be
seen in Figure 3. The authors of the paper [10] present the
dataset RELLIS-3D, a collection of off-road environments
captured at the Rellis Campus of Texas A&M University. The
RELLIS-3D dataset comprises a large set of raw sensor data,
including color camera images, laser scans, high-precision
global positioning measurements, inertial measurements, and
depth images from a 3D stereo camera, and is labeled
in 20 classes. The results show that SalsaNext achieves a
higher mIoU of 43.07% compared to KPConv’s 19.07%,
which is significantly lower than their performance on the
SemanticKITTI dataset, which was 59.5% mIoU and 58.8%,
respectively. The imbalance in the point cloud dataset poses
a significant challenge for both algorithms, with KPConv
showing a more pronounced degradation. Despite attempts
to mitigate the imbalance through sampling strategies during
training, such efforts only marginally improved the results
by 0.6% mIoU [10].
As the classes did not include forest roads, we selected

a subset of the 20 available classes, focusing only on those
relevant to detecting passable ground. This subset includes
dirt, grass, puddles, asphalt, and mud.

Fig. 3: The architecture of the SalsaNext [2].

After implementing, we conducted rigorous testing for
various environments and sensors. The following chapter
describes the results and evaluations of these tests in detail.

IV. EVALUATION
Autonomous navigation in off-road scenarios presents

unique challenges that demand robust and accurate percep-
tion systems.

A. Data Generation
To evaluate the three networks and generate test data, we

are utilizing the robots, Mercator [6], developed by Graz Uni-
versity of Technology, and Husky2, developed by Clearpath.

2https://clearpathrobotics.com/
husky-unmanned-ground-vehicle-robot/

Mercator is a universal off-road platform developed for
autonomous navigation in disaster response scenarios. It is
a four-wheeled mobile platform with double Ackermann
steering, an onboard computer, and a mounting frame for
various sensor setups. Husky is a medium-sized robotic
development platform with a large payload capacity. It is a
customizable robot with the ability to add multiple sensors.
The assessment spanned diverse environments, ranging from
optimal visibility forest roads to challenging off-road terrains
covered with grass.
To collect and record data for analysis, we equipped

the two unmanned robots mentioned above with a ZED2
stereo camera3 and 3D LiDAR scanners. Our data collection
spanned a variety of environments and locations, including
mountainous areas, rural landscapes, and forest roads in
Styria, Austria, capturing different weather and terrain con-
ditions. We selected challenging scenarios from the collected
data for network testing, including varying light conditions,
narrow forest roads, off-road paths with grass tracks, and
grass-covered terrain, as shown in Figure 4. The ground truth
annotation of the data was conducted manually.

B. Network Performance Metrics:

To evaluate the three different models, we have used the
widely used mean intersection-over-union (mIOU) metric
[3], which is given by

mIOU =
1
C

C

∑
c=1

TPc
TPc+FPc+FNc

(1)

where C is the number of classes, and TP (=true posi-
tive), FP (=false positive) and FN (=false negative) are the
predictions for class c. The analysis focused on two classes:
traversable and non-traversable areas.

C. Quantitative Results

We chose 250 images from our generated data for a
quantitative analysis, described in IV-A. This ensures a well-
distributed selection that captures key challenges such as
lighting conditions, vegetation, and shadows.
Table I outlines the mIOU rates for each network for each

image shown in Figure 4 and the mIOU (=mean IOU). No-
tably, on the mIOU, the DeepLabV3+ model outperformed
OFF-Net by 9.64%, despite OFF-Net utilizing the surface
normal as additional information. The SalsaNext network
achieved a mIOU rate of 27.86%, emphasizing its ability
to distinguish between traversable and non-traversable areas.

Reference Green Strip Shadow Underexposed mIOU
DeepLabV3+ 95.11% 51.55% 53.29% 1.53% 76.91%
OFF-Net 73.60% 29.25% 50.60% 0.12% 67.27%
SalsaNext 30.82% 28.28% 35.53% 19.87 27.86%

TABLE I: mIOU of the three neural networks.

3https://www.stereolabs.com/docs
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D. Comparative Analysis:

Despite OFF-Net incorporating additional information, the
DeepLabV3+ model outperformed it. This raises questions
about the effectiveness of the extra data and underscores
the importance of careful feature selection and integration.
Figure 4 shows the difference between the two networks
using camera information, in which the second column shows
the ground truth in light green, the third column shows the
prediction of the DeepLabV3+ model in blue, and finally, the
last column shows the prediction of the OFF-Net network in
dark green.
The four different scenarios visualize the main problems

and limitations of the two networks. The first scenario (refer-
ence) shows a well-visible, clear, and wide forest road, which
both networks can predict quite well, with both mIOU values
higher than 70%, as shown in Table I. The next scenario
(green strip) shows an off-road divided by a grass strip.
Here, both networks have difficulty accurately delineating
the entire road and only manage to identify segments without
grass. Again, the DeepLabV3+ scores a higher mIOU value
compared to the OFF-Net.
The third scenario (shadow) shows a narrow forest path in

a partially shaded wooded area. The OFF-Net has difficulty
distinguishing between shaded and sunlit areas. However,
DeepLabV3+ shows superior performance in this respect,
suggesting that the OFF-Net model could be improved by
refining the training dataset. DeepLabV3+ detects areas at
the side of the path, which can lead to difficult or impassable
paths. If we look at the mIOU values from Table I, we can
see that DeepLabV3+ has a slightly higher mIOU value, but
if we look at the images, OFF-Net is more accurate on the
path. Last but not least, a road is completely covered with
grass, which neither network can predict. Both networks have
an mIOU value lower than 2%. It shows the networks are
not trained for this type of off-road.

E. Insights into SalsaNext Network:

While SalsaNext demonstrated its ability to distinguish
between drivable surfaces such as grass, dirt, and bush, ...
its limitation lies in its lack of specificity in identifying
true off-road. As a result, it is not a good choice for off-
road detection and, therefore, scores the worst mIOU values.
Future improvements could focus on refining the training
data to include a wider range of off-road surfaces, thereby
improving its ability to make nuanced distinctions. Figure 5
shows the predicted point cloud for different environments.
The first environment is a wide forest road; the second is a
narrow forest path.

F. Challenges and Solutions for OFF-Net:

OFF-Net faced challenges related to sun reflection and
shadows, impacting its predictions. Bright reflections and
rapid changes in brightness, especially transitioning from
shadows to sunlight, were identified as major concerns.
Moreover, the network can be improved by adding more
difficult scenarios to the training data, such as underexposure,

forest roads divided by grass strips, or fully covered roads
with grass.

V. CONCLUSION

This paper evaluated three neural net-
works—DeepLabV3+, OFF-Net, and SalsaNext—for
autonomous navigation in off-road environments using the
Mercator robot. Tests covered forest paths, narrow trails, and
grass-covered terrain, highlighting each model’s strengths
and limitations.
Future work should improve SalsaNext’s training data and

improve OFF-Net through adaptive mechanisms or filtering.
These insights support further optimization of network ro-
bustness for real-world off-road navigation.
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Fig. 4: Predictions of the image based networks DeepLabV3+ and OFF-Net.

(a) RAW Pointcloud (b) Ground Truth (c) SalsaNext

Fig. 5: SalsaNext Network prediction
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Multi Robot Route Planning for ROS2

Matthias Reicher1 and Markus Bader1

Abstract—This work presents the implementation of a multi
robot route planner based on the prioritized planning approach
as well as its integration into ROS2 and the well-known Nav2
stack. Further, a method to increase the resilience towards
uncertainty and unpredictability in timing during the execution
of found routes is introduced. These so-called routing precondi-
tions are shown to be effective on a subset of routing scenarios
and offer significant opportunity for further exploration.

Index Terms—multi robot system, path planning, ROS2,
Nav2

I. INTRODUCTION

To leverage the advantages of a multi-robot system (MRS),
large fleets of mobile robots must be able to effectively
compute routes from one point in the environment to an-
other without risking collision. This makes multi-robot-
route-planning a fundamental problem for MRS, as it lays
the groundwork for more complex behavior [3]. Many ap-
proaches to solving this problem have been discussed in the
literature, with so-called ”prioritized planning” appearing in
a significant number of publications [2]. However, up to
current knowledge, no publicly available ROS2-compatible
software packages provides an easy integration of such
functionality. This work aims to close the identified gap,
similar to the previous work of [1] on ROS, but by tak-
ing advantage of the advanced capabilities offered by the
well-known Nav2 stack. Results are presented by using a
simulated environment as shown in Fig. 1.

II. PRIORITIZED PLANNING

Prioritized Planning refers to the practice of decompos-
ing the multi-robot-route-planning problem into a series of
single-robot-route-planning (SRRP) problems. Each of the
SRRP-problems concerns itself with finding a collision-free
route for an individual robot and must take static obstacles as
well as robots for which a route has already been found into
consideration. Since routes are planned in descending order
according to some priority metric, higher-priority robots
represent dynamic obstacles in the planning space of low
priority robots.

III. IMPLEMENTED PLANNING ALGORITHM

To realize this specification of a Prioritized Planner, some
considerations need to be made: First, a planning algorithm
which is able to handle dynamic obstacles is required to solve
the individual SRRP-problems. Second, the routes generated
by the prioritized planner need to be suited for execution by
a real MRS.

1The authors are with Faculty Informatics at TU Wien, Vienna, Austria.
firstname.lastname@tuwien.ac.at

(a) Initial position (b) During navigation with Nav2

Fig. 1: Stage-simulation of a 32-robot MRS.

A. Sequential Planner

The chosen planning algorithm can be described as a vari-
ant of the spatio-temporal A*-Algorithm introduced in [4]
operating on a graph-based abstraction of the environment.
This abstraction is able to emulate 4/8-connected grid maps,
as well as higher level concepts such as voronoi graphs
with multi-edges. The key difference to the well-known A*-
Algorithm is given by additional occupancy checks whenever
a graph vertex is explored and added to the frontier: should it
be occupied by another robot at the point in time in which the
planning robot expects to enter, time must be spent waiting
earlier along the currently considered route. If it is impossible
to insert this waiting time at some point along the path
without risking collisions, the proposed node is not marked
for further exploration. These iterative planning processes
result in a detailed record describing at which points in time
any particular graph vertex is expected to be occupied by a
robot if no unexpected delays occur.

B. Route Representation

After planning an ideal path for a robot in the system,
post-processing is done to create a route suited for execution
by a real MRS. Routes consist of a series of indexed route
segments, each describing a move from one vertex of the
graph to one of its neighbors. In addition to the timestamps
during which this move is expected to take place, a set of
preconditions for the segment is generated by considering all
other robots scheduled to pass the destination of the move
before it occurs. A precondition is considered to be satisfied
as soon as the robot it is referencing has completed the
noted segment of its own route (i.e. it has passed through
the vertex at which both routes cross). This creates clear
precedence relations, which serve to improve the systems
resilience towards neglected or unexpected delays during
navigation.
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IV. ROS2 INTEGRATION

The ROS2 integration of the implemented planner is
split between multiple communicating system components,
pictured in Fig. 2.

Fig. 2: Architecture of the ROS2 integration.

A. Route Distributor

The Route Distributor node acts as the central coordinator
of the MRS. It is responsible for initializing navigation
by generating each robots route using the implemented
prioritized planning algorithm and distributing them among
the MRS using ROS actions. During route execution, it
monitors the received feedback and aborts navigation should
unexpected issues arise.

B. Route Supervisor

The communication between robots and the Route Dis-
tributor is handled by an individual Route Supervisor node
for every robot. Each of these nodes also monitors the robots
progress along its own route and publishes this information
for consumption by all the Route Followers in the system.
This enables robots to wait on unsatisfied preconditions to
in order to avoid situations not considered during planning.

C. Route Follower

To enable the use of the wide variety of localization
strategies, local planners and other software components
available within Nav2, the system integrates with a Nav2-
planner-plugin known as the Route Follower.

V. EVALUATION

The implemented planning algorithm was tested on ran-
domly generated routing problems featuring 8-32 robots
concurrently attempting to find a route through a heavily
restricted warehouse-like environment. Through varying the
order in which routes are planned, a solution to each of
these routing problems was found. The systems capability

Fig. 3: Routing success in a highly constrained environment.

of executing these found routes was then evaluated by
simulating navigation using the Stage simulator.
Fig. 3 depicts the ratio of individual robots which were

able to reach their goals as well as the chance of any robot
failing to finish its route due to an emergency stop, a collision
or similar reasons. Both metrics behave in a roughly linear
fashion, resulting in sharply degrading reliability as more
concurrently navigating robots are added to the system.
Two central causes for these failures were identified:
1) Off-the-shelf Nav2 local planner solutions navigating

based on a generic path representation deviating from
the strictly defined pre-planned routes.

2) Endless waiting on an unsatisfied precondition refer-
ring to a stuck robot causing cascading failure in the
system.

VI. SUMMARY AND OUTLOOK
Collision-free routes for members of a multi-robot sys-

tems can be found by the implemented algorithm, but it
is evident that this does not guarantee that these routes
can be executed without issue in realistic conditions. While
routing preconditions were introduced to counteract timing-
related failures, they have proven insufficient to avoid them
entirely without addressing flaws in the systems architecture
and implementation. Introducing additional mechanisms to
increase robustness such as on-line re-planning in case of a
detected deadlock represents another avenue for future work.
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