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ROS with LEGO Spike
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Abstract—Teaching mobile robotics algorithms through
hands-on hardware exercises can be both costly and resource-
intensive. This work addresses this challenge by introducing an
affordable differential drive vehicle constructed from LEGO
components. An onboard Raspberry Pi, equipped with a camera
and a Build HAT, provides standard ROS2 interfaces. An out-
standing feature of the design is the calculation of laser ranger
data from camera images, which enables the investigation of
sensor and motion models, as well as probabilistic approaches
for self-localization and mapping. The paper presents a proto-
type together with statistical results on the motion and sensor
models within the real and simulated environment.

Index Terms—ROS2, Mobile Robot, Self-Localization

I. INTRODUCTION

Robot Operating System (ROS) plays a major role in the
growing field of robotics, especially in education, such as
teaching mobile robotics. Integrating affordable hardware
with a software platform like ROS enables undergraduate
students to gain hands-on experience in robotics.
This paper explores the possibilities of integrating the

Lego Spike PRIME robotics kit into the latest version of
ROS2 [1], utilizing a Raspberry Pi 4 single-board computer.
For tight integration with the ROS2 ecosystem we employ
pre-existing components such as ros control [2], the default
ROS2 implementation of AMCL (Adaptive Monte Carlo
Localization) and the simulation tool Gazebo [3]. The ex-
perimental evaluation shows the viability of the presented
approach as a base platform for simple localization tasks.

Fig. 1: The assembled
robot used for the eval-
uations of this paper.

Fig. 2: Generating laser range
data for localization using low-
cost camera images.

II. RELATED WORK

Commercial platforms such as the Turtlebot [4], which
was specifically developed for ROS, are also frequently
used in education to practice hands-on mobile robotics.
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However, the acquisition costs play a very large role and
therefore make it a less accessible option for institutions with
limited resources. [5] also looks at using Lego Spike based
robots in combination with ROS2 and Gazebo, however
does not address localization. Our design fills this gap by
extracting laser ranger data from camera images, allowing
direct application of textbook algorithms like [6].

III. IMPLEMENTATION

To provide a base platform for teaching, we developed
three primary components: hardware support, localization
system using a camera and a simulation environment. The
components draw their information from a shared robot de-
scription in the Unified Robot Description Format (URDF).

A. Hardware Support
One challenge of hardware integration is retaining

reusability for different robot designs. Thus, we leverage
existing motion controllers of the ros2 control framework,
by providing the robot description and a plugin serving as
a hardware abstraction layer for the Lego hardware. This
layer controls the actuated wheels connected to the Raspberry
Pi Build HAT, communicating using the documented serial
protocol.
For evaluation, we use a differential drive platform with

two independently driven wheels on each side of the robot
and a caster wheel, allowing the robot to move in both
linear and angular directions (Fig. 1). The differential drive
controller included in ros2 control then translates motion
commands to wheel velocities and performs odometry with
the data from the wheel encoders.

B. Localization
Classic implementations of AMCL and SLAM (Simulta-

neous Localization and Mapping) operate on laser range data
[6], however such sensors are expensive. We solve this issue
by developing an intermediate layer, which extracts distance
measurements from camera images using line markings on
the floor.
Using the cameras intrinsic and extrinsic calibration pa-

rameters we construct a projective transform H ∈ R3×3,
mapping points on the ground plane to points on the camera
plane. We determine lines in the image corresponding to
radial lines around some ray center point on the ground
plane. Along each ray, we apply a simple edge detection
kernel, and estimate the width of the line using two pairs of
line entry and exit points. After checking against the width
threshold to isolate line markings from other line features,
entry points are reported as the distance measurement in the
respective direction (Fig. 2).
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C. Simulation

Since many educational robotic tasks can be prototyped
and evaluated in simulation, we set up a simulation environ-
ment to support development and preliminary testing. The
same robot description used for hardware support is enriched
by physics parameters specific to the simulator Gazebo. Most
noteworthy are mass, rotational inertia and friction. We ap-
proximated inertia by dividing the robot into subcomponents,
each of which were approximated as cuboids and cylinders
with evenly distributed mass. The inertia calculation is then
automatically performed by Gazebo. Friction parameters
were manually tuned to prevent the robot from slipping in
the simulation (µ1 = µ2 = 1.0).

IV. RESULTS

We evaluated and compared the vehicle’s pose estimation
using only the implemented motion model (odometry) and
using AMCL with our emulated laser ranger data. Ground
truth data was acquired from an OptiTrack motion tracking
system.

A. Experimental Setup

The map used for evaluation is roughly a square with
a side length of one meter and black, 5 cm thick tape
markings used for localization. The robot is instructed to
follow a figure-eight trajectory using open-loop control, and
the trajectories estimated using odometry and AMCL are
then compared against ground truth. Performance is analyzed
in both simulation and real world environments according to
[7].

B. Analysis

For a qualitative analysis of self-localization accuracy,
we plot the trajectories for both simulation and real-world
environments (Fig. 3). The convergence of the estimated
AMCL trajectory towards the ground truth can be observed in
Figs. 3a, 3b and 3d. We can also observe reasonably accurate
odometry in Fig. 3c.
In simulation and without an offset in the initial pose

estimate, the estimation using AMCL shows an absolute tra-
jectory error of 9.6 mm, while the accuracy of the odometry
trajectory has absolute trajectory errors above 50 mm.
Since [7] disregard offsets in the trajectory’s starting

pose, the numeric evaluation suggests that the estimated
AMCL trajectories in the real world are worse than the
raw odometry. However, Fig. 3d shows the improvement the
localization system achieves: While the odometry can never
match the ground truth trajectory, the AMCL particle filter
relatively quickly converges to the correct position.

V. CONCLUSION

The robot’s performance under real-world conditions
demonstrated its potential as a suitable platform for teach-
ing fundamental robotics concepts, such as navigation and
localization. Robot control was proved to be precise in
both simulation and real-world environments. Although self-
localization solely derived from the wheel encoders deterio-
rates over time due to drifting, the AMCL particle filter did
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Fig. 3: Ground truth trajectories vs. the trajectories estimated
by odometry and AMCL in simulation and real world envi-
ronments. The right column shows that AMCL with emulated
LIDAR data is able to recover from an initially incorrect pose
estimate (∆x=−100 mm, ∆y=−100 mm, ∆θ = 0.3).

not only achieve smaller pose errors but could also recover
from incorrect initial pose estimates.
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