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A Modular and Configurable Architecture for ROS2 Hardware
Integration with micro-ROS
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Abstract—In general, a vehicle cannot follow a given tra-
jectory if the control commands for the motor controllers are
not delivered to the hardware in time. This issue arises when a
standard computer running ROS 2 is used for control without
a real-time extension. This paper presents an architecture that
leverages micro-ROS on an ESP32-C6 with a RISC-V CPU
running a Real-Time Operating System (RTOS). The goal is
to demonstrate that drift compensation, based on odometry
and IMU data, can be performed in real-time directly on
the microcontroller. As a first step, we show how micro-
ROS handles robot kinematics (Ackermann steering) within
the firmware, configured via a persistent parameter server. We
demonstrate that this design improves integration simplicity,
adaptability, separation of concerns and evaluate real-time
compliance.

Index Terms—micro-ROS, mobile robotics, embedded sys-
tems, ROS 2

I. INTRODUCTION

This paper proposes a microcontroller-based ROS 2 inte-
gration architecture aimed specifically at modular, config-
urable robotics hardware. Leveraging the micro-ROS frame-
work, it provides a plug-and-play solution that simplifies
interfacing embedded hardware with higher-level ROS 2
ecosystems shown in Figure 1. Traditional designs often
use onboard computers that interact directly with hardware
components (as can be seen in [7]), a strategy that can lead
to redundant software development, a mixing of low-level
hardware interactions with higher-level control concerns, and
challenges in ensuring real-time performance. Micro-ROS
addresses these limitations by extending ROS 2 functionali-
ties directly to resource-constrained microcontrollers.
In this approach, the micro-ROS agent on the ROS 2 host

translates the lightweight eXtremely Resource-Constrained
Environments-Data Distribution Service (XRCE-DDS) mid-
dleware used by micro-ROS into standard DDS messages
[1], [2]. It supports transports such as UDP and USART
by default, and can be extended with custom implemen-
tations. However, hardware variations often force firmware
rebuilds or manual tweaks; our design instead embeds an
NVS-backed parameter server, allowing kinematic and hard-
ware settings to be adjusted live via ROS 2 parameters.
Incorporating an RTOS into the firmware permits local

prioritization of time-critical tasks, ensuring reliable op-
eration under strict deadlines. Prior work in underwater
vehicles demonstrates a micro-ROS RTOS setup [6], but
offers no built-in mechanism for runtime customization or
a clear task breakdown. In contrast, we leverage advanced

1The authors are with Faculty Informatics at TU Wien, Vienna, Austria.
firstname.lastname@tuwien.ac.at

Fig. 1. System overview and test platform on the right

RTOS features alongside our persistent parameter server
and detail a modular FreeRTOS task architecture (see II-
B). While demonstrated on an Ackermann-steering robot,
our modular FreeRTOS task breakdown and NVS parameter
server generalize directly to other ROS 2–integrated hardware
and form the basis for more advanced microcontroller-based
trajectory following.

II. PROPOSED ARCHITECTURE

A. Hardware Components and System Overview

The initial question was how best to structure motor
control for an Ackermann robot integrated with ROS 2.
As highlighted in the introduction, conventional approaches
often conflate low-level hardware interfacing with high-level
control, impede real-time performance, and lack a common
framework for comparing firmware designs. The goal of the
specific design in this paper is to accept twist commands
via the /cmd vel topic, compute the necessary kinematics
for motor speeds and steering in the firmware, while pub-
lishing the resulting odometry, thus simplifying the interface
between ROS 2 system and hardware. Kinematic and control
variables are live-adjustable through the parameter server.
This approach is demonstrated on the MX-Car [4], a mobile
robot developed at TU Vienna with an Ackermann drivetrain
featuring two non-steering rear wheels (driven by BLDC hub
motors) and a front steering servo.
Figure 1 shows the overall system with the hardware

platform at the right. The top segment depicts the onboard or
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Fig. 2. Firmware application architecture overview

network-connected computer running ROS 2 (with a Docker-
ized micro-ROS agent), the middle segment shows the ESP32
running FreeRTOS with a dedicated micro-ROS node using
Non-Volatile Storage (NVS) for persistent configuration and
the respective interaction with the sensors and actuators. A
more detailed look at the firmware is provided in the next
section.
The single-core ESP32-C6-DevKitM-1 is used as primary

controller due to its processing capabilities, peripherals and
open RISC-V architecture. Micro-ROS integrates into its
build system via an ESP-IDF component [3]. Motor control
is provided by two daisy-chained ODrive-Micro controllers,
with a Control Area Network (CAN) transceiver interfacing
the microcontroller to exchange commands (e.g., position,
speed, effort) and feedback (e.g., velocity, current) [5].

B. Firmware and Communication

Figure 2 shows a simplified view of the firmware architec-
ture. We enforce strict timing by splitting work across four
FreeRTOS tasks with distinct priorities. The can dispatcher
and mros executor tasks run at highest priority, ensuring
no inbound messages are lost. The odometry task runs at
medium priority, and the low-priority time sync task handles
agent clock alignment via micro-ROS mechanisms (obtain-
ing the host timestamp) without interfering with real-time
deadlines.
The can dispatcher manages all CAN traffic to and

from the motor drivers, and the mros executor drives the
micro-ROS executor, handling subscribers, timers, and an
NVS-backed parameter server. Configuration parameters and
kinematic properties (e.g., wheel base, track width) are stored
persistently in non-volatile storage and can be updated via
standard ROS 2 param calls.
Incoming twist messages on /cmd vel are processed in

the mros executor: the callback computes motor and steering
setpoints using the Ackermann kinematic model as described
by [8] and forwards them to the drives, so no command
queuing is needed. In the odometry task, execution blocks
until fresh encoder estimates arrive from both drives; it then
performs forward kinematics to update an internal pose. A
timer-driven publisher retrieves this pose through a single-

element FreeRTOS queue (buffering only the latest state)
and publishes on /odom, timestamping the message with
the arrival time of the latest encoder sample. An onboard
or remote ROS 2 computer (depending on the transport) can
then integrate higher-level features such as path planning or
trajectory control.

III. EVALUATION
To assess the real-time performance of the integration

of this architecture, we measured timing at 10Hz over the
115200 baud serial transport during full system operation.
For odometry, 1200 messages were received by the host. The
reception intervals exhibited a mean of 99.998ms, a standard
deviation of 5.63ms, and a peak-to-peak jitter of 52.0ms.
We then measured the round-trip delay from publishing a
stamped twist command message on the host to applying
motor setpoints on the microcontroller by again logging 1200
messages. This delay averaged 28.684ms, with a standard
deviation of 4.73ms, and spanned 27.82ms peak-to-peak. In
both cases, no messages were lost.
Compiled with space optimization, the complete firmware

occupies 342.9kB of flash (4.09%) and 118.2kB DIRAM
(26.15%), confirming a compact footprint.

IV. SUMMARY AND OUTLOOK
This paper presents an architecture that integrates

resource-constrained microcontrollers with ROS 2 using
micro-ROS on an RTOS. It exposes hardware interfaces
as standard topics and services and simplifies configuration
via a persistent parameter server. We evaluated its real-time
performance at 10Hz over serial transport, observing latency
and jitter levels acceptable for typical mobile robotics appli-
cations, while still leaving room for optimization.
Future work will build on this architecture to realize

complex trajectory control on the microcontroller. The aim
is to calculate collision-free trajectories in the ROS 2 frame-
work on the host and then pass them on to the micro-ROS
controller for execution.
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