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A Trajectory Consistency Metric for GNSS Anomaly Detection with
LiDAR Odometry
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Abstract— While Global Navigation Satellite System (GNSS)-
based robot localization is successful in open scenarios, it
quickly becomes unreliable in GNSS-degraded environments
such as forests. With the increasing interest in using au-
tonomous robots in forestry, it becomes more important to
have reliable localization in forest environments, which are
among the most challenging areas for GNSS-based localization.
Having an estimate for the quality of the localization can
help achieve this. While GNSS receivers provide uncertainty
estimates based on signal characteristics and the satellites’
constellation, practical experience shows that these values are
less meaningful in forests. This paper presents an error metric
that exploits the properties of commonly used robot localization
setups to assess the quality of the localization. This assessment
is based on a comparison between a LiDAR odometry-based
local trajectory estimate and a GNSS-based global trajectory
estimate in their respective coordinate systems. A qualitative
analysis shows that the metric enables meaningful statements
about the quality of position estimates derived from GNSS
measurements in the global coordinate system.

Index Terms— anomaly detection, GNSS, LiDAR odometry

I. INTRODUCTION
State estimation architectures of mobile robots often sepa-

rate global and local state estimation for localization [6],[3].
This is done by using two world-fixed coordinate systems, a
local coordinate frame that is locally consistent but suffers
from long-term drift, and a global coordinate frame that is
globally consistent but suffers from transient errors in GNSS-
based position information. In forest environments, GNSS-
based position estimation is heavily influenced by the sur-
rounding environment due to signal shading and reflections
caused by objects like trees or rock walls [2]. Even when the
GNSS data is fused with IMU (Inertial Measurement Unit)
data, practical experience has shown that these phenomena
still have a large impact on the global position estimate [6].
However, many robots today are equipped with a LiDAR
sensor, which can be used for local motion estimation
and provides low-drift, locally consistent position estimates
[5]. This work exploits the properties of local and global
trajectories to detect patterns in the global trajectory that
are not backed by the local trajectory. Based on this we
developed a metric for assessing global localization quality,
which allows monitoring of localization quality in real-time,
making it usable for anomaly detection, adaptive sensor
fusion, or GNSS rejection strategies.
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II. RELATED WORK

LiDAR-based odometry estimates the motion of a robot
by aligning successive point clouds. Direct LiDAR Odom-
etry (DLO) [1] is a computationally efficient approach that
enables real-time LiDAR odometry on resource-constrained
robotic platforms. One of the key features of the method is a
submapping strategy that aims to keep the position estimate
locally consistent. This makes it a reasonable choice for the
use in local state estimation in forests.

In [7], the authors propose the use of trajectory similarity
metrics for comparing a reliable short-term trajectory from
motion estimation with an IMU with a trajectory obtained
from GNSS measurements. These metrics compare only the
similarity of the point sets. In contrast, the proposed ap-
proach computes its error value based on full transformations
€ SE(3). This allows the application of orientation- and
translation-based error metrics.

III. METHODOLOGY
A. Localization Consistency Evaluation

To assess the reliability of GNSS-based localization in
forest environments, we introduce a trajectory error metric
that evaluates the consistency between local trajectories and
global trajectories. Since the LiDAR odometry trajectory is
locally consistent, it serves as a short-range reference. To
achieve this, a relative pose error estimate between pose pairs
from the global and local trajectories is used. To fully exploit
the information contained in poses in SE(3), an alignment
of the trajectories is necessary to ensure that both position
and orientation are compared meaningfully. In addition, the
resulting error estimate should show a high sensitivity to
the consistency of the most recent pose. In order to achieve
this objective, each transformation used is related to this
pose which is illustrated in Figure 1. For each evaluated
pose, a subtrajectory is selected using a fixed spatial window
defined by the parameters As, and As;, where As, defines the
minimum look-back distance, ensuring that only sufficiently
separated past poses are included, and Asy defines the maxi-
mum look-back distance, limiting the subtrajectory length to
prevent excessive drift influence. Given a trajectory parame-
terized by the cumulative distance traveled s from the LIiDAR
odometry, the sub-trajectory consists of poses selected within
the interval [s — Asp, s —As,). By choosing poses within this
range, we ensure that the sub-trajectory captures the recent
motion history while maintaining a stable reference for error
computation. This results in three necessary steps that must
be performed for each pose of interest: 1) subtrajectory
selection: collect past poses within the interval [s — Asp, s —
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Asg], 2) alignment: align local and global subtrajectories to
ensure a meaningful comparison of transformations, 3) error
computation: compute the consistency error between both
subtrajectories as defined below.

Fig. 1. llustration of the trajectories used to compute the consistency error.
The green poses are the poses of the trajectory of the robot in the global
coordinate system. The orange poses are the poses of the robot in the local
coordinate system. The global poses are related to the local ones based on
time, meaning every P- maps to a PC.

B. Error Metric Formulation
The transformation from the current pose to the pose at
5 —As in the aligned local trajectory is given by:
L L -1 L
Ti”ns s = (Tlign - Py (Talign - Ph), (D)
where Ta‘}ign is the transformation obtained in the alignment

step, and P‘SL is the pose of the local trajectory at traveled

distance s. The global trajectory is related to the local
trajectory by the time f(s), with poses defined as ffs), and
the corresponding transformation:

1
Tasa9) = (Bl-as) ™ By @

The relative transformation error is computed as:

-1
E(As,s) = (G agus) -

where any error metrics for SE(3), such as rotational or trans-
lational error, can be applied. To demonstrate the approach
we employ the translational error according to [4]:

er(As,s) = ||trans(E(As,s))|| € RT. 4)

Fass €SE(3), (3

Finally, the consistency error is computed as:

1

er(s) = (Asp —As,)

Asg
f er(c,s) do €RY. (5
Asp

er(s) represents a metric for the consistency of the local
and global subtrajectory and consequently for the current
quality of localization.

IV. RESULTS

In the implementation, the integral for the consistency
error from Equation 5 is approximated using the trapezoidal
rule, performed on poses sampled over s for As;, =0 and
Asp = 15m. To evaluate the metric, we used data collected
in a forest setting where the global trajectory was estimated
using a geo-konzept geo-kombi INS/GNSS system, while the
local trajectory was derived from DLO using data from a
Livox MID-360 LiDAR sensor. Figure 2 shows a part of a
trajectory estimated by the GNSS system, where the value
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of er(s) is color coded. The robot moved along the middle
of a forest road. The road shown in the underlying map
can be used as a qualitative reference. It is clearly visible
that the estimate of er(s) is high for obvious anomalies,
while it is low for regions where the estimate is likely to be
correct. This observation was further confirmed by analyzing
the consistency error over a trajectory of more than 6km,
showing a strong correlation between high error estimates
and significant GNSS inconsistencies.
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Fig. 2. Global GNSS-based trajectory estimate on a forest road with the
corresponding consistency errors er(s) color coded. For visualization pur-
poses, the local LIDAR odometry-based trajectory estimate is additionally
shown, aligned to the global trajectory estimate using a selected region.

V. CONCLUSION

This work introduces a metric to assess the reliability of
GNSS-based localization in forest environments. It compares
local LiDAR odometry and global GNSS trajectories to
enable real-time anomaly detection and localization quality
monitoring. The metric provides a measure of localization
data consistency that can be used for adaptive sensor fusion
or GNSS rejection strategies. Future work will focus on eval-
vating this method in diverse environments and integrating
it into state estimation frameworks for improved robustness.
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