
Proceedings of the
Austrian Robotics Workshop 2025

FH Salzburg
Campus Urstein
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Preface

The Austrian Robotics Workshop (ARW) is Austria’s central annual platform for exchanging
ideas and presenting innovations in the field of robotics. Since its beginnings in 2006, ARW has evolved
into a vibrant event that connects researchers, students, professionals, and industry representatives from
across Austria and beyond. It fosters collaboration, sparks new ideas, and showcases the latest develop-
ments in robotic systems, intelligent automation, and human-machine interaction.

The 2025 edition of ARW is hosted by the Department of Information Technologies and
Digitalisation at Salzburg University of Applied Sciences. Nested in a vibrant region of innovative
robotics and automation industry, this year’s workshop brings together a broad and dynamic community
to discuss current research, share experiences, and explore future trends.

This year’s call for papers covered a wide range of topics in robotics and automation, including:

� Mechatronic Design, Kinematics & Dynamics, and Embedded Systems

� Control and Machine Learning, Planning, Reasoning & AI

� Robot Perception, Computer Vision, Navigation & Manipulation

� Cybersecurity, Safety & Resilience, and Systems Engineering

� Human-Robot Interaction, Collaborative Robotics, Ethics & Sustainability

� Field Robotics, UAVs, UGVs, and Agricultural/Rescue Robots

� and novel Robotic Applications in Real-World Environments

The accepted contributions reflect this diversity, ranging from Sim2Real transfer for grasp verification
and low-cost real-time communication, to drone-based perception in agriculture, autonomous navigation,
and inclusive workstations for industrial collaboration. A dedicated student session provides young re-
searchers with a platform to present early ideas and engage in interdisciplinary discussions with peers
and experts.

The Austrian Robotics Workshop is organized under the auspices of GMAR – Gesellschaft
für Mess-, Automatisierungs- und Robotertechnik – and is supported by theAustrian Electrotechnical
Association (OVE) and the Austrian Research Promotion Agency (FFG). Their contributions
and continuous support are instrumental in ensuring the ongoing success and development of ARW.

We sincerely thank all authors, reviewers, speakers, and attendees for their valuable input and en-
gagement. Our special thanks go to the local organizing committee at FH Salzburg and to all partners
who have helped shape this year’s event.

We wish all participants an inspiring workshop, meaningful discussions, and a wonderful stay in
Salzburg!

Simon Kranzer, Stefan Huber, Simon Hoher, Dorian Prill, Matthäus Horn and Hanna Trenkler (on
behalf of the organizing committee)

Puch, May 2025
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Update of the SCARAB robot to sort valuable items in containers of
residual waste

Daniel Reischl1, Johannes Wenninger, Simon Zwirtmayr and Johannes Schröck

Abstract— In this paper the features of the autonomous
mobile robot SCARAB are extended. SCARAB is now not
only exchanging full waste containers with empty ones but also
sorting out the valuable objects of the waste. For this task, a
gripper was added to the robot’s end-of-arm tool. The fingers of
the gripper have a Fin Ray design to robustly grasp the objects.
Adaptions of the waste container allow to empty the waste onto
a sorting table without additional actuators. Object detection
is done with a YOLOv8 model which was initially trained with
an open data set and improved with additional training data.
In order to label this training data a standalone tool based
on the Segment Anything Model (SAM) was developed. The
paper shows the mechanical design of the gripper fingers, the
adaption of the waste container as well as the design of a
suitable sorting table. It is demonstrated that the waste sorting
task is carried out robustly without the need of any additional
expensive equipment.

Index Terms— object detection, segmentation, waste sorting

I. INTRODUCTION

Automated image-based recognition and sorting of waste
using robots is already being used commercially world-
wide. Companies such as ZenRobotics, WasteRobotics, AMP
Robotics, Recycleye, Machinex, Bollegraaf, Green Machine
and many others offer solutions for efficient sorting on a
conveyor belt. However, efficient object recognition is also
still a topic of research [7].

This paper, however, is not about a highly efficient imple-
mentation of a waste sorting system with expensive cameras
and fast delta robots. Our focus is on the subsequent and
cost-effective retrofitting of an existing robot, which is used
already to autonomously exchange full waste containers for
empty ones.

The development platform SCARAB [10] was able to
collect full waste containers on demand autonomously and
bring them back to a garage. With this setup however it
was not possible to sort the waste and all the waste was
treated as ”residual waste”. In January 2025 a deposit on non-
returnable containers was put into force in Austria [1], which
changed the requirements for the SCARAB platform. As
minimum requirement, at least the containers (bottles, cans,
etc.) which are subject of the deposit have to be identified
and separated of the waste automatically. In this paper the
challenges of adapting an existing mobile robot to this new
task are described as well as the technical solutions applied
for a successful implementation.

1All authors are with Linz Center of Mechatronics GmbH, Altenberger
Straße 69, 4040 Linz, Austria daniel.reischl@lcm.at

Fig. 1. SCARAB during operation while changing the container.

II. SCARAB DEVELOPMENT PLATFORM

The mobile robot SCARAB shown in Fig. 1 was designed
to drive autonomously in a semi-public area and exchange
the full waste containers. As presented in [10], a sensor in
the waste container reports the filling height and a mission to
exchange the container is initiated, if the boundary conditions
(e.g. weather) are fulfilled. The entire process is not time-
critical and the main focus is on personal safety. The new
task of sorting waste is therefore carried out in a locked
garage to which no passers-by have access. The garage
door is controlled automatically via the higher-level mission
control system.

After returning back to the garage, SCARAB is now
driving to a sorting table. The full waste container is emptied
onto the sorting table with the robot arm. No additional
actuators or sensors are necessary for the robotic arm or
the waste container as shown in section III in more detail.
The pile of waste on the sorting table is slightly distributed
by a statically programmed movement of the robot arm to
facilitate object recognition. A picture of the waste is taken
with the wrist camera of the robotic arm. Based on this
picture, the valuable items in the waste are detected, as shown
in section IV. The recognized objects are sorted out of the
waste one by one and separated in the appropriate containers.
The waste remaining after the sorting process can then be
fed into an appropriate residual waste container by tilting the
sorting table. Once the sorting process is complete, SCARAB
picks up the empty waste bin and moves to the charging

Proceedings of the Austrian Robotics Workshop 2025
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Fig. 2. Already existing passive end of arm tool with Realsense camera
and LED lights to manipulate the containers.

station to wait for its next mission.

III. MECHANICAL ADAPTIONS

The design of SCARAB should not be changed, but addi-
tional features are necessary to perform the sorting process.
In order to solve this challenge, mechanical adaptions of the
waste containers were necessary as well as to add a sorting
table and a gripper.

A. Container

The waste bin has a lid with an integrated fill level sensor.
This configuration with lid and the robot end effector, which
picks up the waste bin via a form-fit connection shown in
Fig. 2, do not allow the bin to be emptied by turning it over.

A mechanism has therefore been developed that allows
the base of the container to be opened. This mechanism
opens the base when the container is pressed against the
rear wall of the sorting table with the robot arm, shown in
Fig. 3 and Fig. 4. After the contents of the container have
fallen out, the bottom of the container is closed again with
a suitable trajectory. Both processes, opening and closing,
are carried out without additional actuators but solely by
pressing the container against the sorting table. The empty
waste container is put on a fixture and the robotic arm with
the gripper is now free for the sorting task.

B. Sorting table

A suitable sorting table was set up, which allows SCARAB
to attach the waste container to the table and then move
partially under the table itself. In this way, it is possible to
optimize the working space of the robot arm. The sorting
table has 2 storage bins, to the left and right of the sorting
surface, into which the cans and bottles are deposited. Once
the sorting process is complete, the sorting area can be tilted
with the robot arm and the remaining waste falls into a
residual waste container, as shown in Fig. 5. The sorting
table is not equipped with any actuators or electronics.

C. Gripper

A passive gripper system was originally developed for
manipulating the waste containers to ensure the most robust

Fig. 3. Mechanism to open the container at the bottom without actuators
by pressing the container to the rear wall of the sorting table.

Fig. 4. Container with opened bottom. The container will be placed on
the fixture after closing the bottom.

Fig. 5. The sorting table is also operated by the robotic arm without
additional actuators.

Proceedings of the Austrian Robotics Workshop 2025
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Fig. 6. Different designs of the gripper: Left with rigid fingers, right with
fin ray design. In the right figure, the Gimatic gripper is shown in red and
blue and the capacitor box is under the lid with the LCM logo.

and safe handling possible. However, a gripper is now
required for sorting the waste.

A self-centring electric angle gripper from Gimatic was
used as the gripper for sorting the waste. This fulfils the
special requirements in terms of available installation space,
closing force and compatibility with the robot arm. The
exact type of gripper is ‘MPBM3240’. The gripper re-
quires additional external control electronics (Capacitor Box
CAPBOX3200-03), which must be used to provide the power
for the Gimatic gripper. Without these electronics, the power
requirement at the pins on the wrist of the UR10e robot arm
could not be covered. Furthermore, different fingers can be
used thanks to the modular design. The gripper also allows
rapid adaptation to other problems, as the fingers can be
created and customised using rapid prototyping.

As the available installation space is very limited in the
folded state, the angular gripper was integrated into the
existing robot end effector to save as much space as possible.
An adapter plate was designed for this purpose, which must
be fitted to the robot’s wrist in the first assembly step.
The Gimatic angular gripper can then be screwed onto this
adapter and fixed in place. The electronics of the Capacitor
Box are located directly in front of the gripper on the robot
end effector. The original robot end effector has been adapted
accordingly so that it can be mounted on the adapter with
the Intel Realsense camera fitted.

The first version of the fingers was 3D-printed from TPU
(thermoplastic material) and is shown in Fig. 6. As the
narrow design of the fingers led to twisting when gripping
and different objects were not always gripped correctly, a
new finger design was tested.

The new design of the fingers was based on the so-called
Fin Ray design, which has already been successfully used
in the literature to grasp variable shapes, [8], [3], [11]. This
design is originally biologically inspired by the tail fins of
fish and patented by the company Evologics GmbH. The
company Festo offers commercial products of gripper fingers
based on this concept. The soft gripper used in our studies
is lightweight (entirely 3D-printed from TPU), has a simple
structure, high compliance and adaptability, and is capable
of grasping objects of any geometry. Fig. 7 shows how the
principle of the Fin Ray design works: In the unloaded
state, the design retains its original shape. If any object is
gripped (for example an already deformed aluminium can),
the gripper automatically adapts to the shape of the object.
This enables various objects to be gripped safely. As the

Fig. 7. Elastic fingers with fin ray design in opened and closed config-
uration. (The LED lights still need to be installed next to the Realsense
camera.)

inner gripper surfaces are aligned parallel to each other in
the open state, the object is automatically pressed towards
the gripper when gripping.

It is also important to mention that the material of the
functional model (except the fingers) is PLA (polylactide).
PLA is not resistant to ultraviolet radiation (UV) and should
be replaced with a UV-resistant material if necessary. If the
first tests are successful, a change to the commercial product
of FESTO will be considered.

IV. MANIPULATING THE OBJECTS

In order to sort out the valuable objects, it is necessary to
identify them within the residual waste, grab them robustly
and place them in separate containers.

A. Segmentation with YOLOv8 model

An instance segmentation model was selected in order to
not only obtain a bounding box of the objects, but also to
detect the exact contour of the waste object. This property
is important in the later calculation of the gripping point in
order to be able to analyse the shape of the object. Therefore,
a YoloV8 model [5] was used to detect the valuable parts of
the waste.

The model was first trained with the TACO dataset [9],
an open image dataset of waste in the wild. This dataset has
63 classes of objects but only ”clear plastic bottle”, ”drink
can” and ”food can” are used in our work.

To create additional training images, the waste container
was filled and opened several times from a defined height
in the center of the table. In total 200 photos were taken of
different waste distributions on the table. 160 photos were
used for training and 40 for validation. A semi-automatic
labeling tool was developed as all contours of the objects
must first be labeled for each photo in order to be able to
train the network later. This would be very time-consuming
with manual labeling. The Segment Anything Model (SAM)
[6] implemented by Meta was used for this purpose, which
saves a great deal of time when labeling the waste objects.
The online version of SAM can not be used for generating
the training data as no labels are available. Meta provides the
code as open source and it was possible to use this code for
developing a standalone offline tool for labeling the images
taken in our lab. The workflow is the following:

1) Click on a single object in the image and SAM will
highlight automatically (at least a part) of the object.

Proceedings of the Austrian Robotics Workshop 2025
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offline tool based on SAM.

2) Add or substract parts of the object by continue click-
ing with the mouse.

3) When the entire object is highlighted, enter the appro-
priate label for the object.

4) Continue with the next object in the image.
5) When all objects in the image are labeled, continue to

the next image.
Comparing Fig. 8 and Fig. 9 shows the good results of the

segmentation algorithm, including concealed and deformed
objects. For the manual labeling only the classes ”food can”
and ”clear plastic bottle” have been used, which will be
called ”bottle” and ”can” in the following.

B. Gripping pose

The Realsense camera is used to find the gripping positions
of the objects. The first step is to take a 2D photo and a depth
image with the camera mounted on the robotic arm from a
well defined position right above the sorting table.

With the YoloV8 model, the objects are segmented in the
2D photo and processed one after the other. As output of
the YoloV8 model the contour of each object is provided in
2D together with a label and a numerical value for the confi-
dence, as shown in Fig. 10 for a bottle which is obstructed by
a sheet of paper. With the function minAreaRect of OpenCV
library [2] the center point, orientation and main axis of
the object contour are computed. The distance between the
camera and the gripping point is determined with an ArUco
marker [4]. The 3D position of this gripping point can then

Fig. 9. Validation of the segmentation: Result of the YOLOv8 model with
the same picture as in the training.

be calculated using the usual camera calibration algorithms.
The following assumptions are made in order to calculate the
6D pose of the gripping point from the position: The gripper
is parallel to the image plane and rotated around the global
vertical axis corresponding to the rotation of the 2D object
contour, as shown in Fig. 11. A safe gripping of the objects
was observed, even in the cases when only small parts of the
object are visible, as shown in Fig. 12.

V. TEST RESULTS

The robustness of the waste sorting process described
above was tested extensively. The objects to be sorted out
of the residual waste were not part of the training data and
can be seen in Fig. 13. The test data consists of 4 bottles
and 5 cans. In addition to these desired objects, the test
waste contains 15 disturbing objects, which were also not
part of the training data: Plastic packaging films, cardboard
and paper.

The tests were done in the following way:
1) fill the waste (desired and disturbing objects) into the

bin and mix thoroughly
2) empty the waste on the sorting table
3) distribute the waste with the robotic arm
4) take a picture of the waste
5) grasp a desired object and put it into the bins next to

the sorting table
6) repeat steps (4) and (5) until no more desired objects

are detected

Proceedings of the Austrian Robotics Workshop 2025
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Fig. 10. Output of the YoloV8 model: visible contour (shown in green)
and label (with confidence) of the object.

Fig. 11. Computation of the gripping point: bounding box (light blue
rectangular) with center point and its rotation in degree.

Fig. 12. Gripping in the center of the bounding box of the (visible) contour
of the bottle.

Fig. 13. Test objects with their classes according to the YoloV8 model.
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Fig. 14. Results of the tests with different settings of the confidence
parameter

These tests were repeated multiple times with different
settings. The most significant parameter regarding the per-
formance of the sorting process was the confidence of the
segmentation step. A low confidence value leads to a high
number of successfully picked objects. However, you have to
accept that a few unwanted objects will also be picked up. In
Fig. 14 the results of the tests are shown. The optimal result
would be to pick 9 out of 9 desired objects and 0 out of 15
disturbing objects. If the same result was observed multiple
times with the same setting, the result is still just shown as
a single point in the graph. The graph shows, that it was
not possible to reach the optimal result with any setting and
that it was not possible to strictly avoid grasping disturbing
objects. However with setting the confidence to 50% it was
possible to reach a robust result of picking all desired objects
while accepting to pick 1 to 3 of the 15 disturbing objects.

A more detailed evaluation of the detection process was
done to study the influence of the confidence value. For each
of the 150 photos taken during the tests, it was analyzed

Proceedings of the Austrian Robotics Workshop 2025
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TABLE I
INFLUENCE OF THE CONFIDENCE SETTINGS ON THE DETECTION RATE.

AVERAGE VALUES BASED ON 150 IMAGES.

confidence setting correct detected objects wrong objects per image
0.50 83% 0.57
0.65 40% 0.19
0.85 34% 0.17

TABLE II
RECORDED TIME FOR THE OBJECT DETECTION IN SECONDS. AVERAGE

VALUES BASED ON THE RECORDING OF 16 OBJECTS.

take picture 0.046
preprocess picture 0.056
segment object (incl. saving the picture) 2.182
compute bounding box 0.158
compute gripping pose (incl. 2 coordinate transformations) 0.010

how many of the desired objects depicted were correctly
recognized and how many of the undesired objects were
erroneously marked. The average values for the 3 different
settings can be seen in Table I. The value for the ”wrong
objects per image” is an absolute value and is between 0.17
and 0.57 objects per image. The correctly detected objects
are given as percentage of the desired objects in the image
and differs between 34% for a high confidence value and
83% for a low confidence value.

The time required for object recognition depends heavily
on the hardware used. In the tests shown here, the photo
was taken using a Realsense camera, the data was read out
via the RTDE interface of the Universal Robot and then
analyzed with a Python script. The evaluation was carried
out on a NUC (Next Unit Computing). All computations are
performed locally with hardware located in the SCARAB
platform. The duration of the individual steps is shown in
Table II.

VI. SUMMARY AND OUTLOOK

It was demonstrated how the functionality of an existing
mobile robot was extended with low cost hardware to add the
feature of waste sorting. The low amount of training data in
the lab still limits the quality of the overall performance but
was sufficient to find the most significant parameter. A good
choice of the limit for the confidence in the segmentation step
has large impact on the results. During operation SCARAB
will collect much more (and more realistic) training data on
a daily basis which will lead to a more robust performance.
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Mechanical Design Optimization of a Pneumatically Actuated Parallel
Kinematic Machine

Klemens Springer1, Hubert Gattringer2 and Andreas Müller2

Abstract— The application field of motion simulation needs
robotic platforms with a high level of dexterity payload.
Therefore increasingly parallel manipulators/platforms are used
as 3 to 6 degree-of-freedom constructions. The contradictory
aim for high applicable forces and large workspace volumes
necessitates an optimization of the mechanical construction.
In contrast to common configurations the robot utilized here
is a hexapod equipped with antagonistic type of pneumatic
actuation, imitating the flexor-extensor principle of human
muscles. A counter force is applied passively through a spring
in the center point of the hexapod. This structure offers
advantages for application as motion simulator such as little
maintenance requirements and low cost assembly. Due to
the direct correlation between actuator length and dynamics,
the use of classical techniques for workspace evaluation in
the area of design optimization is not applicable. The paper
illustrates the optimal design of this parallel kinematic ma-
chine concerning maximum workspace taking into account the
dynamical system. The presented method ensures stability in
the upper maximum possible position through an additional
optimization of the maximum disturbance force. The resulting
multi-objective optimization problem is solved by using an
evolutionary algorithm with a Pareto approach. The introduced
method for evaluating an adequate measure of the maximum
workspace volume for parallel platforms is well suited in the
application field of motion simulators. The optimal solutions of
the Pareto front are evaluated and compared to the parameters
used in the existing configuration of the platform at the Institute
of Robotics.

Keywords: multi-objective optimization, parallel robots, de-
sign optimization, motion simulator, pneumatic actuation

I. INTRODUCTION

Parallel kinematic machines have received growing atten-
tion in the fields of vibration damping, medical surgery and
industrial applications like toolheads in the last few years,
see [1], [2]. Originally invented for motion simulation (see
[3], [4]), which is the purpose here as well (Fig. 1), hexapods
have successfully asserted themselves in this area. Following
the most accurate definition Gough platform is used for the
parallel platform. The main advantages, good accuracy and
dexterity, of a Gough platform accompany the disadvantage
of small workspace, which is most important for the given
application. Thus a main aim within the mechanical design
of these platforms is the maximization of the workspace
volume without loosing the advantageous properties, see [5],
[6], [7]. In the last years a lot of research has been done in
the optimization of the dynamic behavior and compliance

1Klemens Springer, Engel Austria GmbH, 4311 Schwertberg, Austria
2 Hubert Gattringer, Andreas Müller are with Institute of

Robotics, Johannes Kepler University Linz, 4040 Linz, Austria
{hubert.gattringer,a.mueller} @jku.at

Ix

Iy

Iz

α

β

γ

Fig. 1: Motion simulator mounted on the parallel platform

by Zhang in [8], stiffness by Krefft in [9], manipulabil-
ity by Wen in [10] and general workspace maximization
with respect to constructive constraints by Masory in [11].
Hardly any attention has been paid to mechanical design
optimization concerning antagonistic actuation systems with
a passive component. This article introduces new techniques
for the workspace optimization of a pneumatically actuated
6-degree of freedom Gough platform including dynamical
considerations. That necessity results from the direct cor-
relation between the kinematics (contraction) and dynamics
(pressure) of the actuator. Due to the lack of the possibility
to impress forces of arbitrary directions by the pneumatic
actuators, see Fig. 2, a spring is mounted in the center
of the construction to passively apply opposite forces and
torques. In order to maximize the possible disturbance force
at the topmost pose, an additional objective criteria is in-
troduced for avoiding the loss of manipulability. Countless
authors addressed single-objective optimizations of parallel
mechanisms. This approach leads to a dominant problem for
the present contradictory formulation. To find an appropriate
solution, it is formulated as a multi-objective optimization
problem. Genetic algorithms, that are predestined for non-
convex and non-smooth optimization formulations, use evo-
lutionary strategies from genetic programming to cope these
types of problems, see [12], [13]. In contrast to standard
gradient-based solvers, they have no need for gradient in-
formation, are nearly independent of discontinuities and are
more efficient in performing a global search. To allow for
multi-objective considerations, a Pareto approach in combi-
nation with genetic algorithms is used.
In accordance with the contents presented above, this paper
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Fig. 2: Possible directions of actuator and spring forces

is arranged as follows. After a description of the model-
ing of the mechatronic system including kinematical and
dynamical considerations (section 2), the formulation of the
optimization problem is shown in section 3. Introducing new
techniques, the calculation of the workspace and maximum
disturbance force is illustrated. Section 4 focuses on the
explanation and implementation of the problem formulation
through a genetic programming based solver with a Pareto
approach for multi-objective considerations. Furthermore the
results of the optimization are presented. At the end of the
paper in section 5 a conclusion for the used technique is
drawn.

II. MODELING OF THE MECHATRONIC SYSTEM

The considered mechatronic system is split into a kine-
matical and a dynamical section, containing the pneumatic
subsystem as well.

A. Kinematic description

The considered robot consists of two rigid platforms - the
fixed base and the movable, coaxially arranged, upper one.
They are connected by six flexible pneumatically driven
fluidic actuators and a spring in the center of the robot,
see again Fig. 2 . This concept is based on the principle
of the human muscle system, whereby here the opponent to
the muscles is a passive one. The inertial coordinate system
is chosen in the center of the base platform. In order to
calculate the maximum workspace, the inverse kinematics,
that describes the actuator lengths in dependence of the
Cartesian coordinates of the tool center point P , is needed.
For this, the solution of I li = IrP + RI4 4rbi − Irai has
to be found (see Fig. 3), where the endpoint vector IrP is
equivalent to the first three entries of the minimal coordinates
q =

[
x y z α β γ

]T .
There, the angles α, β, and γ represent the rotation of the

upper platform in Cardan description and x, y, z the position
relative to the inertial coordinate system. The rotation matrix
RI4 relates the body-fixed coordinate system 4K in the

P

I li

Iz

Ix
Iy

I

4K

lBi

lAi

Irai

4rbi

IrP

rB

rA

Fig. 3: Coordinate systems and kinematics for one arm

center of the upper platform to the inertial frame. The vectors
Irai and 4rbi to the actuator contact points are calculated as
functions of the optimization variables rA, rB (radii of the
mounting mounts of the actuators), αoff and βoff (offset
angles), shown in Fig. 4 and Fig. 3.

Iz

Ix

Iy

αoff

4z

4x
4y

60◦

120◦

120◦

βoff

βi

−βoff

rB

rA

Moving Platform

Fixed Base

Mounting Points

P

Fig. 4: Angular offsets

Constraints: For respecting constructive constraints, the
maximum actuator lengths lmax = l0 (1 + 0.05), lmin =
l0 (1− 0.25), given by the manufacturer’s specifications, and
passive joint angles

θA,iMin ≤ θA,i = cos−1
(
Ie

T
3 Iui

)
≤ θA,iMax , i = 1 · · · 6

θB,iMin ≤ θB,i = cos−1
(
4e

T
3 Iui

)
≤ θB,iMax , i = 1 · · · 6

(1)

with the actuator direction vectors and the unit vectors in the
respective coordinate systems

Iui =
I li
‖I li‖

=
IrP +RI4 4rbi − Irai
‖IrP +RI4 4rbi − Irai‖

, i = 1 · · · 6

Ie
T
3 = [0, 0, 1] , 4e

T
3 = [0, 0, 1]

(2)

have to be formulated (Fig. 5). The pneumatic actuators
have a nominal length of l0 and are fixed with universal
joints, mounted in axial bearings, in the upper platform.
As a consequence of this additional degree of freedom, the
upper universal joints do not constrain the maximum angles
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Fig. 5: Kinematic constraints for joint angles

of inclination θB,i = 90◦. In contrast to this, only 60◦ are
allowed for the universal joints’ inclination angles θA,i at the
base platform. Actuator collisions can be neglected because
other constraints become active before they would occur.

B. Dynamical description

The equations of motion in minimal description are calcu-
lated with the projection equation, see [14] and results in

M(q)q̈ + g(q, q̇) +Kq = Qm = B(q)Fm

Fm = [F1, F2, .., F6]
T (3)

see [15] for details. M(q) is the mass matrix, and g(q, q̇)
contains the remaining nonlinear terms (gravity, centrifugal,
Coriolis). K represents the stiffness matrix due to the spring
forces. The generalized driving forces Qm can be separated
into the input matrix B(q) and the actuator forces Fm. These
actuator forces are projected into the minimal space by

Qm =

6∑

i=1

JT
m,i Iui Fi. (4)

The partial derivatives of the vectors to the actuator mount
base IrMi, see Fig. 5, yield the Jacobian

Jm,i =
∂IrMi

∂q
=

∂ (IrP +RI4 4rbi)

∂q
, i = 1 . . . 6. (5)

Eq. (4) can be combined to

Qm = B(q)Fm. (6)

1) Pneumatic subsystem: The 6 pneumatic subsystems
consist of a fluidic actuator by FESTO, called fluidic muscle,
an analog proportional valve, a pressure sensor and a linear
potentiometer to measure the actuator lengths ‖I li‖2. The
muscles are made of a fiber-reinforced rubber tube with
mounting flanges at the ends. The actuator operates as
follows: Air flows into the tube and leads to increasing
pressure pi, i = 1 . . . 6 and thus to a broadening of the
muscle. Because of specially arranged fibers this results in a
contraction h of the muscle

hi =
l0,i − ‖I li‖2

l0,i
100%, i = 1 . . . 6 (7)

in percent in longitudinal direction with the relaxed link
length l0,i of muscle i. This fact is used to generate pulling
forces

Fi =

(
pi

na∑

k=1

akh
k
i +

nb∑

k=1

bkh
k
i

)
, i = 1 . . . 6 (8)

that have nonlinear characteristics and depend on the pres-
sures pi and the contractions hi. The polynomial coefficients
ak, bk are derived from a mathematical approximation of
the actuator’s characteristics given by the manufacturer, see
Fig. 6.

h in %

F
in

N

p = 6 bar
p = 5 bar
p = 4 bar
p = 3 bar
p = 2 bar
p = 1 bar

1

2

3

4

6

5

7

8

9

10
×103

−6 −1 4 9 14 19 24

Fig. 6: Characteristics of the fluidic muscle DMSP40 by
FESTO

2) Identification of the spring parameters: In order to
describe the dynamical model from section II-B as exact as
possible, which is needed for the optimization formulation,
the spring parameters have to be known. Therefore an
identification of the stiffness matrix K is done based one the
Least Squares method, see [16] for details. This identification
was verified through calculating a feedforward control based
on the identified spring stiffness matrix and evaluating the
position error. The error is around 0.5mm in the middle of
the workspace and not much higher in the topmost and the
lowest pose.
Since the identification is only done relative to the one
set of muscles used for the measurement and the specified
repeatability is ≤ 1%, the inaccuracy of the actuators does
not influence the spring identification. More sophisticated
models of the spring using neuronal networks can be found
in [17].

III. OPTIMIZATION PROBLEM

As discussed extensively in numerous publications, the most
important optimization criterion in the process of mechanical
design of parallel kinematic machines is the maximization
of the workspace. Commonly the workspace is iteratively
evaluated with a method, based on the inverse kinematic
of the Gough platform, see e.g. [11]. Different from this
approach an application adequate measure is used here as
a substitution for the workspace volume. This simplification
balances out the increased calculation effort caused by the
necessary consideration of the actuator dynamics while re-
sulting in a quality of the solution that is sufficient for motion

Proceedings of the Austrian Robotics Workshop 2025

https://doi.org/10.34749/3061-0710.2025.2 15
Creative Commons Attribution
4.0 International License



D
ra

ft

simulation. Furthermore the orientation is included in the
used application adequate measure.

A. Workspace

Due to the high complexity of the analytical calculation
of the workspace, a numerical approach similar to that
in [11], has been chosen. Based on the assumption,
that the volume of the cubage can be approached with
VAR = 1

3 (xmax − xmin)
∣∣
z=zmid

(ymax − ymin)
∣∣
z=zmid

(zmax − zmin) with the workspace center zmid =
(zmin + zmax)/2, the maximum translational displacements
xmin, xmax, ymin, ymax, zmin and zmax have to be
calculated. Therefore the actuator lengths of 6 reference
poses

qP1 = [0, 0, zmin, 0, 0, 0]

qP2 = [0, 0, zmax, 0, 0, 0]

qP3 = [xmin, 0, zmid, 0, 0, 0]

qP4 = [xmax, 0, zmid, 0, 0, 0]

qP5 = [0, ymin, zmid, 0, 0, 0]

qP6 = [0, ymax, zmid, 0, 0, 0]

(9)

are evaluated with respect to the length and joint angle con-
straints. Only constraints concerning the lower joint angles
have to be considered. The procedure is introduced briefly:

1) Starting at an infeasible point, e.g. qP = [0], the
actuator lengths and joint angles for an increasing z
coordinate are iteratively calculated. The first point
that does not violate the constraints represents the
minimum displacement zmin.

2) Starting at qP1 the z coordinate is increased again
and the actuator lengths and joint angles are iteratively
calculated. If the constraints are violated, the last feasi-
ble position reveals the maximum displacement zmax.
Hence the relative displacement ∆z = (zmax − zmin)
is calculated.

3) Next the actuator lengths and joint angles are cal-
culated for positions with increasing displacements
in the x and y coordinates one axis after the other,
starting at the workspace center (qP1 + qP2) /2. If
the constraints are violated, the last feasible position
reveals the maximum displacement xmax or ymax.

4) The same way xmin and ymin are computed with
decreasing displacements starting at the workspace
center, which from ∆x = (xmax − xmin) and ∆y =
(ymax − ymin) ensues.

On the basis of this algorithm, an objective function for
evaluating an application adequate measure as approximation
for the workspace volume of this hexapod, treated as a
rigid mechanism, can be suggested. The calculation of the
maximum positions starting at (qP1 + qP2) /2 is completely
admissible in the specific application field of a motion
simulator, whose default position is at q0 = (qP1 + qP2) /2.
The optimization variables to manipulate this measure are
the platform radii rA, rB and the offset angles αoff , βoff ,
see Fig. 4. Reconsidering the direct correlation between

impressed force and contraction of the pneumatic actuators, it
comes clear that not only kinematics have to be kept in mind,
but also the dynamic modeling and a dynamic mass calcu-
lation due to variable platform radius rB . Consequently, the
workspace calculation has to be extended and the maximum
positions are calculated with respect to dynamics. Regarding
this problem statically with q̇, q̈ = 0, the actuator forces

Fm (q, q̇ = 0, q̈ = 0) =

B(q)−1
(
M(q) q̈︸ ︷︷ ︸

0

+g(q,0) +Kq
)

Fm (q) = B(q)−1
(
Kq+ g(q,0)

)
(10)

are calculated via the inverse dynamics. Hence and in com-
bination with the muscle contractions at the current position
gained via inverse kinematics and Eqn. (7), the required
muscle pressures

pi =
Fi −

∑nb

k=1 bkh
k
i∑na

k=1 akh
k
i

, i = 1 . . . 6 (11)

are determined. If the pressure constraints 0 ≤ pi ≤ pmax =
6bar, given by manufacturer specifications, are violated, then
the displacement zmin,act = zmin,act + ∆zred, exemplary
shown for the minimum displacement in z-direction, is re-
duced consecutively by a minimal value ∆zred till a feasible
position is found.
In order to include the orientation in this measure, the maxi-
mum rotatory displacementsφφφ, analogously to the workspace
volume evaluation, are calculated in 6 reference poses

qP7 = [0, 0, zmid, αmin, 0, 0]

qP8 = [0, 0, zmid, αmax, 0, 0]

qP9 = [0, 0, zmid, 0, βmin, 0]

qP10 = [0, 0, zmid, 0, βmax, 0]

qP11 = [0, 0, zmid, 0, 0, γmin]

qP12 = [0, 0, zmid, 0, 0, γmax] .

(12)

Hence ∆α = (αmax − αmin), ∆β = (βmax − βmin) and
∆γ = (γmax − γmin) result. Now the workspace evaluation
function can be stated as

ΨAR =
1

2
W11∆x2 +

1

2
W22∆y2 +

1

2
W33∆z2+

1

2
W44∆α2 +

1

2
W55∆β2 +

1

2
W66∆γ2

=
1

2

[
∆rT ∆φφφT

]
W

[
∆r
∆φφφ

]
=

1

2
∆qTW∆q

W ≥ 0

(13)

with the positive definite diagonal weighting matrix W =
diag(0.5, 0.5, 5, 0.5, 0.5, 0.05) and the diagonal entries Wii.
The maximum displacements are represented with ∆rT =
[xmax − xmin, ymax − ymin, zmax − zmin] and ∆φφφT =
[αmax − αmin, βmax − βmin, γmax − γmin].
In the application of a motion simulator, gravity is used
for simulating sustaining accelerations through tilting the
pilot’s seat. Therefore defined minimum required rotations
[αlb, αub] = [−10◦, 10◦] and [βlb, βub] = [−10◦, 10◦] are
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postulated for the roll angle α and the pitch angle β, that
are considered through an unequality constraint

ΨAR,c =





ΨAR αmax > αub ∧ αmin < αlb ∧
βmax > βub ∧ βmin < βlb

0 else
(14)

implemented in a constrained workspace evaluation function.

B. Disturbance force

Numerous publications concerning research in stiffness,
compliance and dynamical optimization can be found, see
[8], [9], [10], as mentioned in the introductory section. These
considerations are featuring minor optimization potential for
the used Gough platform, because of only one variable dy-
namic parameter (upper platform mass) and the predominant
structural compliance due to the fluidic muscles and the
spring. Another challenging peculiarity of this construction
is the one-way force direction of the actuators. As a con-
sequence a force impression in positive z direction in the
upper reference pose qP2 is not possible if an adequate
pretension of the spring through the parameter lp, see Fig. 2,
is missing. Therefore the maximum possible disturbance
force in negative z direction Fdist,max has to be optimized
with lp as optimization variable. The force

Fdist,max = eT3

6∑

i=1

JT
m,i Iui∆Fi

eT3 = [0, 0, 1, 0, 0, 0]

(15)

results out of the maximum applicable muscle forces ∆Fi

with the Jacobian Jm,i for the transmission of the generalized
forces, see Eqn. (5), and the unit vectors Iui, see Eqn. (2)
and Fig. 5. The required actuator forces

∆Fi = Fi(pmin,i)− Fi(p0,i), i = 1 . . . 6 (16)

are gained out of the drive forces, see Eqn. (8), in the upper
reference pose qP2 with the unknown pressure

pmin,i = p (Fi (q = qP2 , Fdist = Fdist,max) , hi(qP2))
(17)

occurring at the impression of the unknown maximum dis-
turbance force and the pressure

p0,i = p (Fi (q = qP2 , Fdist = 0) , hi(qP2 ) (18)

occurring in the absence of the disturbance force, see
Eqn. (11). The needed forces in joint space Fm ∈ R6 are
a result of an adapted inverse dynamic, formulated out of
Eqn. (10) with an additional disturbance term Fdist

Fm (q, Fdist) = B(q)−1
(
Kq+ g(q,0)− Fdiste3

)
. (19)

In order to calculate pmin,i we need to know that in the top-
most position at least one actuator holds a relative pressure
of pmin = 0 bar when the maximum controllable disturbance
is impressed. Hence the maximum pressure reserve

∆p = min
i

{0− p0,i} (20)

due to the muscle pressure constraints, mentioned in section
III-A is determined. Furthermore, the muscle forces can be
expressed with pmin,i = p0,i + ∆p and the evaluation of
Eqn. (16) and Eqn. (8) to

∆Fi = ∆p

na∑

k=1

akh
k
d, i = 1 . . . 6. (21)

If force impressions of arbitrary directions are desired, then
the maximum pressure reserve is computed to

∆p = min
i

{
(0− p0,i)

∂pi

∂Fdist

}
∂pi

∂Fdist
, i = 1 . . . 6 (22)

with the pressure rate gained through a difference approxi-
mation

∂pi
∂Fdist

=
p∆Fdist,i − p0,i

∆Fdist
, i = 1 . . . 6

p∆Fdist,i = p (Fi (q = qP2 , Fdist = ∆Fdist) , hi(qP2 )) ,
(23)

and a small disturbance force ∆Fdist. With the evaluation
of Eqn. (15) the second objective function is defined as well.

C. Optimization Problem

The overall optimization problem can now specified as

max
x

J1 = ΨAR,c

max
x

J2 = Fdist,max

s.t. rB ≤ rA

x ≤ x ≤ x

(24)

with the optimization variables x = [rA, rB , αoff , βoff , lp]
that are bounded to lower bounds x and upper bounds x.

IV. OPTIMIZATION PROCEDURE

The formulation of Eqn. (24) describes a multi-objective
optimization problem. The objectives J1 and J2 behave
contradictory, whereby a multicriterial approach is needed for
finding an appropriate solution. Therefore a Pareto approach
is applied, because using one objective function as a result
of a direct weight assignment method for example does
not describe a physical representation. The solver used here
is the existent and versatile solver gamultiobj in Matlab.
The resulting Pareto front in Fig. 7, that represents the
number of non-dominated solutions, shows the dominance of
the maximized disturbance force, evaluated in the objective
function J2. Despite this fact, an applicable set of solutions
has been found through the Pareto approach. The Pareto
front also reveals solutions that allow very high disturbance
forces in the upper maximum pose. Based on a maximum
load of 150 kg, the parameters with the biggest workspace
volume measure ΨAR,c and sufficient Fdist,max are gained
out. Important for the construction in the application field of
motion simulation are mainly the parameters ∆z,∆α and
∆β, as it emerges from the weighting values in section
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Fig. 8: Comparison between the current and one optimized
configuration for the Gough platform

III-A, in order to simulate high-frequency up and down
movements and sustaining accelerations through utilizing the
gravitational vector. In comparison to the current configu-
ration of the Gough platform at the Institute of Robotics,
a huge improvement in the important degrees of freedom
is achieved. This comparison of the resulting constructions
is illustrated in Fig. 8, that shows the expected behavior.
The narrower the construction is, the higher is the maximum
applicable disturbance force and the more expanded the
platform is, the bigger the workspace measure will get.

V. CONCLUSION

Optimizing the kinematic design parameters of the construc-
tion is a traidoff between maximizing the admissible distur-
bance forces at the upper extremal position and maximizing
the workspace. In the decision making process for the choice
of a solution from the Pareto front, a compromise was made.
Furthermore the combination of kinematics and actuator
dynamics involves challenging difficulties. It was shown that,
despite the pneumatic actuator dynamics, a workspace opti-
mization with a maximization of the admissible disturbance
force was possible using the methods of genetic algorithms
in combination with a Pareto approach concerning multi-
objective optimization formulations.
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Analysis and tuning of PID controller gains for DC servo drives using
Garpinger’s trade-off plots*

Simon Hoher1 and Jakob Rehrl2

Abstract— Although PID tuning for DC drives is widely
studied, a structured, practical guide addressing robustness and
setpoint tracking/disturbance rejection trade-offs is still lacking.
This paper condenses established methods into a clear, step-by-
step approach for optimal PID tuning using Garpinger’s trade-
off plots, aiming at practical use in industrial applications.

Index Terms— PID control, Garpinger’s trade-off plots,
AMIGO and Garpinger method, servo drives

I. INTRODUCTION

Precise PID tuning is essential for electric drive con-
trol in industrial settings, requiring fast disturbance rejec-
tion, setpoint tracking, and robustness. This paper presents
the Approximate M-constrained Integral Gain Optimization
(AMIGO) [7] and the Garpinger method [4] as structured
tuning approaches addressing these needs. AMIGO ensures
fast, robust control without overshoot; Garpinger adds flex-
ibility by allowing gain adjustment without compromising
performance. Though focused on DC motors due to their
modeling simplicity, results apply to synchronous motors via
PQ-transformation [6], which are standard in industry. Using
Garpinger trade-off plots, we show that optimal gains can
be selected directly, offering an efficient and practical tuning
method suitable for broader adoption.

II. RELATED WORK

A. PID Control: Basics and Challenges

PID control is widely used due to its simplicity and
robustness [3]. The controller output is defined as

u(t) = KP · e(t)+KI ·
∫ t

0
e(τ)dτ +KD ·

de(t)
dt

,

where u(t) is the controller’s output, e(t) the control error,
KP the proportional gain, KI the integral gain and KD the
derivative gain.

Tuning the gains KP, KI, KD is nontrivial, as it must ensure:
• Stability of the closed loop system,
• Fast response to setpoint changes and disturbances,
• Minimal overshoot,
• Robustness to model uncertainties.
In practice, cascaded control structures are often used to

enhance performance (see Figure 1).

* The financial support of the Christian Doppler Research Society and
the associated company partners of JRC ISIA is gratefully acknowledged

1Salzburg University of Applied Sciences, JR Center
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simon.hoher@fh-salzburg.ac.at

2Salzburg University of Applied Sciences, JR Center
for Intelligent and Secure Industrial Automation (JRC ISIA)
jakob.rehrl@fh-salzburg.ac.at

B. Cascaded Control

Cascaded control is widely used in motor control, espe-
cially for DC and synchronous motors [2]. It consists of
nested loops (see Figure 1):

1. Inner Control Loop: The inner control loop regulates
the motor’s speed and quickly responds to load changes.

2. Outer Control Loop: The outer control loop handles
position control. The primary goal of the outer loop is to
maintain accurate position control and ensure closed-loop
stability.

Profile
Generator

Cr(s) C(s) P(s) Pr(s)
− −

r er eur

di

u y yr

Fig. 1. Cascaded control with upstream profile generator

Typically, a trapezoidal velocity profile is used to provide
the motor movement in three phases [3] (see Figure 2):

1. Acceleration Phase: The motor accelerates with a
constant maximum acceleration amax to the maximum speed
vmax.

2. Constant Speed Phase: After reaching the maximum
speed, the motor continues to move at constant speed vmax.

3. Deceleration Phase: The motor decelerates with the
same maximum acceleration −amax to precisely reach the
final position.

0 0.5 1 1.5 2 2.5 3

−50

0

50

Time (in s)

r (in rad)
ṙ (in rad/s)
r̈ (in rad/s2)

Fig. 2. Calculated trajectory with a trapezoidal velocity profile for given
waypoints 4 and 12 revolutions (vmax = 40 rad/s, amax = 80 rad/s2)

C. Garpinger’s trade off diagrams

The design of PID controllers often involves balancing
competing objectives, such as minimizing control error and
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ensuring robustness against disturbances and model uncer-
tainties. The Garpinger trade-off plots provide a powerful
visualization of these trade-offs by representing performance
and robustness criteria explicitly [4]. These plots help to
identify optimal PID parameters by highlighting the com-
promise between error minimization and robustness.
Three key criteria are typically used in these analyses:

Performance Criteria: IE and IAE

The IE criterion measures the integral of the control
error e, i.e., IE =

∫ ∞
0 e(t)dt. This metric captures the overall

magnitude of the error but does not emphasize short-term or
large deviations.

The IAE criterion improves upon the IE by emphasizing
absolute deviations, which are often more relevant in practi-
cal systems,

IAE =
∫ ∞

0
|e(t)|dt. (1)

The IAE is widely used as a performance metric because
it penalizes persistent deviations more effectively than the
IE. A lower IAE indicates better performance in terms of
setpoint tracking and disturbance rejection. If |IE| and IAE
yield identical values, no overshoot occurs in the system.

The computation of the I(A)E values is typically done for
two experiments: i) a step response from di to y (disturbance
rejection), and ii) a step response from ur to y (setpoint
tracking) in Figure 1.

Robustness Criterion: Maximum Sensitivity Mst

The robustness of a control system is commonly evaluated
using the maximum sensitivity criterion, defined as:

Mst = max
ω

(|S(jω)| , |T (jω)|) (2)

S(jω) is the sensitivity function, representing the system’s
response to disturbances and model uncertainties at different
frequencies. T (jω) is the complementary sensitivity func-
tion and represents the closed-loop frequency response for
setpoint tracking, describing how the output y responds to
changes in the setpoint r. A lower Mst corresponds to a more
robust system that tolerates model variations better. A higher
Mst suggests the system is less robust, as uncertainties are
amplified more significantly.

The Trade-Offs in Garpinger Plots

The Garpinger trade-off plots visualize the interplay be-
tween performance (IAE) and robustness (Mst) (see Figure
3).
Unstable KP-KI parameterizations are colored grey (by the
term unstable, a closed-loop system that is not internally
stable [9] is ment). The Mst is plotted as red line, and the
IAE as blue line. The IE value can be calculated by reading
the controller gain on the ordinate axis: IE =−1/KI. Where
the |IE| value coincides with the horizontal line of the IAE
value, |IE| and IAE have the same value. The IAE value does
not change along the blue lines. Each point corresponds to
a specific set of PI controller gains.
The optimal line (green in Figure 3), or Pareto front, is

the set of points where no further improvement in one
criterion can be achieved without degrading the other and
is plotted as green line. Designers can choose parameters
along this (green) line depending on the specific application
requirements.

Fig. 3. Grapinger’s trade off plot

Control gains to the left of the Pareto front lead to an
overshoot (since |IE| ̸= IAE), to the right of the Pareto
front to a less robust system (since IAE is constant but Mst
increases) and longer settling time (since IAE is constant but
proportional controller KP gain is increasing). By using these
plots, it is possible to systematically select PID parameters
that balance performance and robustness in a way that aligns
with the specific needs of the control system. This approach
not only improves system reliability but also provides a clear
methodology for achieving optimal tuning.
The plots show how reducing the |IE| or IAE (better perfor-
mance) often comes at the expense of increased Mst (reduced
robustness). Lowering the IAE typically requires higher PID
gains, which may improve disturbance rejection or setpoint
tracking but also makes the system more sensitive to noise
and model uncertainties. Reducing Mst enhances robustness
but may result in slower responses and larger errors. In
the Garpinger’s trade-off plots, an optimal line emerges,
representing the best compromise between performance and
robustness (see green line in Figure 3). Remark: This opti-
mal line yields different sets of controller parameters when
considering either disturbance rejection or setpoint tracking
trade-off plots. In the remainder of the paper, the type of plot
that is used is always mentioned. In some of the Garpinger
plots, two lines describing the optimal controller parameters
are shown. The green one is related to the disturbance
rejection, whereas the magenta one is related to setpoint
tracking.

D. AMIGO and Garpinger Method for PID Controller Tun-
ing

The AMIGO method is a modern approach for tuning PID
controllers, designed to overcome the limitations of tradi-
tional tuning methods such as Ziegler-Nichols method [7].
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The method incorporates advanced design criteria to opti-
mize disturbance rejection and minimize overshoot, while
ensuring high robustness against model uncertainties and
process variations.

The AMIGO method calculates the PID controller gains
(KP, KI, KD) based on the step response of the system.

1. Process Gain (K): The steady-state gain of the system,
calculated as: K = ∆y/∆u where ∆y is the change in the
output and ∆u is the change in the input of the plant.

2. Time Delay (L): The time it takes for the output to
begin responding significantly after the input step.

3. Time Constant (T ): The time required for the system
to reach approximately 63 % of its steady-state response,
minus the time delay.

Based on the above parameters, the AMIGO method
calculates the PI gains as follows:

KP =
0.15

K
+(0.35− L ·T

(L+T )2 ) ·
T

K ·L , (3)

TI = 0.35L+
13L ·T 2

T 2 +12L ·T +7L2 , (4)

KI =
KP

TI
. (5)

If the D term is also to be considered, then there are
also analogous formulas that interpret the controller gains
somewhat more conservatively [1].

In certain cases, process constraints require adjustments
to the controller gain. The Garpinger method addresses this
by calculating the optimal integral gain (KI) as a function of
the proportional gain (KP) based on parameter fitting derived
from Garpinger’s trade-off plots [4]

KI =
KP +0.1K ·K2

P
0.3L+0.7T

, (6)

and is valid for Mst < 1.6.

III. RESEARCH QUESTION AND APPROACH

This research explores and compares the performance and
robustness of two modern tuning methods for PID controllers
in motor control: the AMIGO method and the Garpinger
method. Both methods are evaluated in cascaded control
systems for speed and position control, using Garpinger’s
Trade-Off Plots to balance performance metrics (e.g., fast
disturbance rejection, precise position tracking) with robust-
ness criteria (e.g., maximum sensitivity).

The evaluation was conducted on an Arduino-based DC
motor system, replicating realistic operating conditions and
noise to test controller robustness. The controller parameters
were validated by observation of the response times of the
speed and position.

IV. CASE STUDY

This section presents the design of a velocity control
loop based on feedback control (IV-A to IV-C) and the
implementation of a position control loop (IV-D).

A. System Identification and Model Extraction

To capture the behavior of the real system, an open-loop
step response was performed using a DC motor from the
Makeblock mBot Ranger kit. The motor is driven by a
PWM signal ranging from -255 to +255 (12 V max). The
measured outputs are angular velocity y (in rpm) and angular
position yr (in radians), obtained via the onboard encoder.
The controller operates at a cycle time of 5ms.

The step response (Figure 4) reveals significant noise in
the speed signal, whereas the position response is relatively
smooth.

4 4.5 5 5.5 6 6.5 7
0

100

200

300

Time (in s)

u
y (in rpm)

yr (in rad)

Fig. 4. Step response of DC motor

To address this, a first-order low-pass filter with a time
constant T = 0.05s was applied, chosen to be about four
times faster than the system’s natural cutoff. This reduces
noise while preserving essential dynamics (see Figure 5).

4 4.5 5 5.5 6 6.5 7

100

200

300

Time (in s)

u
y in rpm
ŷ (filtered) in rpm

Fig. 5. Step response of DC motor with a filtered angular velocity with
filter time constant T = 0.05s

The filtered system is modeled as

P(s) =
Ŷ (s)
U(s)

=
K

T · s+1
·e−L·s =

2.222
0.198 · s+1

·e−0.087·s. (7)

This first-order lag plus time delay (FOLPD) model suffi-
ciently captures the motor dynamics (see Figure 6) and serves
as the basis for controller design.

The maximum velocity vmax and acceleration amax, needed
for trajectory generation, are estimated directly from steady-
state K and maximum input u as

vmax ≈ K ·umax ·
2π
60

= 2.222 ·255 · 2π
60
≈ 50rad/s, (8)

amax ≈ 2 ·umax ·
K
T
· 2π

60
≈ 600rad/s2. (9)
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ŷ (measured)
y (modeled)

Fig. 6. Comparison of the real measurement data with the identified FTOD
model

B. Garpinger’s Trade-Off Plots for Performance and Robust-
ness

To evaluate the controller design, trade-off plots based on
the Garpinger method were created in MATLAB for both
disturbance rejection (Figure 7) and and setpoint tracking
(Figure 8). These plots visualize the trade-off between per-
formance (measured by IAE) and robustness (measured by
maximum sensitivity Mst).

Fig. 7. Garpinger’s trade-off plot for disturbance rejection

1. Pareto Front Analysis:
The green and magenta lines represent Pareto fronts for dis-
turbance rejection and setpoint tracking, respectively. Each
point on the front offers the best achievable performance
for a given robustness level. For Mst < 1.2, the fronts
diverge, revealing that both objectives cannot be optimized
simultaneously.

2. Choice of Robustness Level:
A moderate robustness level of Mst = 1.4 is selected, as this
value provides a reasonable balance between sensitivity to
disturbances and robustness against uncertainties. For this
Mst value, the controller gains can then be read off the Pareto
Front for disturbance rejection (green line) at KP ≈ 0.34 and
KI ≈ 2.07 (see Figure 7) and KP ≈ 0.38 and KI ≈ 1.95 for
setpoint tracking (see Figure 8).

3. Impact of Optimization Choice:
Tuning for disturbance rejection leads to better rejection
performance but results in overshoot during setpoint changes.

Fig. 8. Garpinger’s trade-off plot for setpoint tracking

Conversely, tuning for setpoint tracking sacrifices disturbance
suppression. This reflects the inherent conflict between these
objectives in PID control.

4. Significance of the Integral Term (KI):
The results consistently demonstrate the importance of in-
cluding an integral term (KI > 0) in the controller design.
While the literature often suggests that a P-P cascaded
control may be sufficient for many applications [8], the
trade-off plots show that an integral term significantly en-
hances both disturbance rejection and setpoint tracking. By
implementing an I-term, the controller achieves superior
overall performance compared to purely proportional control
strategies. In addition, the disturbance error would not be
eliminated with a pure P control, as the plant does not have
a pure I component.

By analyzing these plots, designers can select the most
suitable controller gains for their specific application, bal-
ancing the trade-offs between disturbance rejection, setpoint
tracking, and robustness. Furthermore, the findings clearly
underscore the practical benefits of including an integral term
in the control design.

C. AMIGO and Garpinger’s tuning rules

The controller gains were initially analyzed using the
Garpinger’s trade-off plot for disturbance rejection. We now
calculate the gains using the AMIGO rule-of-thumb method
(see equations (3), (4) and (5)) and the parameters L, T and
K from our model (see equation (7)), which yielded specific
values for KP ≈ 0.21, TI ≈ 0.18, and KI ≈ 1.17.

These values were then compared to the trade-off plot
for disturbance rejection (see Figure 9). The results showed
that the gains obtained from the AMIGO method lie closely
on the Pareto front for a robustness level of Mst < 1.4.
This demonstrates that the AMIGO method provides optimal
controller gains for a fixed robustness criterion of Mst < 1.4,
ensuring a balance between disturbance rejection and robust-
ness.

However, the AMIGO method has a notable limitation:
it does not allow for independent adjustment of the pro-
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Fig. 9. AMIGO and Garpinger’s rule-of-thumb highlited in Garpinger’s
trade-off plot for disturbance rejection

portional gain KP. To address this issue, the Garpinger
method was applied. Different values below an Mst value
of 1.6 were chosen manually for the proportional gain and
the corresponding integral gain KI is calculated using the
Garpinger formula (6):

KP 0.1 0.2 0.3 0.4 0.5
KI 0.62 1.27 1.94 2.64 3.37

The new KP-KI pairs lie once again near the Pareto front
of the Garpinger trade-off plot for disturbance rejection (see
Figure 9). This result confirms that the Garpinger method not
only accommodates adjustments to KP but also ensures that
the recalculated KI maintains an optimal balance between
performance and robustness for disturbance rejection. How-
ever, these pairs are located significantly to the left of the
Pareto front for setpoint tracking (magenta line in Figure
9), particularly for higher KP values. This indicates that
controllers optimized for disturbance rejection are expected
to exhibit considerable overshoot in response to setpoint
changes. The results further emphasize the fundamental
trade-off between disturbance rejection and setpoint tracking:
the system can be optimized for one objective or the other,
but not for both simultaneously. Consequently, the choice
of controller parameters must carefully consider the specific
performance priorities of the application, as optimizing for
one criterion will inevitably compromise the other.

To validate the calculated controller parameters, the
AMIGO and Garpinger methods (with KP = 0.4 and KI ≈
2.64) were tested on the real motor system. The controllers
were implemented on the Arduino-based setup, and their per-
formance was evaluated under practical conditions, focusing
on setpoint tracking scenarios (see Figure 10).

The results revealed that the motor followed the de-
sired velocity setpoint accurately, with a significant veloc-
ity overshoot for the Garpinger method. This behavior is
consistent with the predictions from the trade-off plot for
setpoint tracking, which shows that controller parameters
optimized for disturbance rejection (with a robustness level
of Mst ≤ 1.4) tend to exhibit reduced performance in setpoint
tracking. Specifically, the controller gains derived from the
AMIGO and Garpinger methods prioritize disturbance re-
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Fig. 10. Step response of motor with AMIGO and Garpinger’s rule-of-
thumb

jection, which can lead to overshoot during rapid setpoint
changes.

D. Cascaded control

Experimental results highlight how the cascaded control
structure performs in response to a trapezoidal velocity
profile (see Figure 11). A significant deviation was observed
between the reference and actual response of the system and
the target values could not be accurately reached. Instead,
load disturbances are optimally compensated for.
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300

400
ṙ
ŷ
u

Fig. 11. Trapezoidal velocity profile response

In the final stage, a PID controller is implemented in
the outer position loop. Unlike the inner loop, whose gains
were determined via tuning rules, the outer loop gains
are directly derived from the Garpinger trade-off plots to
optimize tracking robustness.

The plant for the outer loop is defined as:

Pout =
Yr

Ur
=

PC
1+PC

·Pr, (10)

where Pr = 1/s represents the integrator that translates the
velocity to a position signal.

A Garpinger trade-off plot is generated for setpoint track-
ing. Since the system has an integrating behavior, the plot
visualizes the trade-off between the proportional gain (KP)
and the derivative gain (KD), rather than the integral gain
(KI) used in the previous trade-off analyses. The disturbance
still acts at the input of P and the noise filter was included in
the calculation (compare equation (7)). The resulting Pareto
front distinctly demonstrates the benefit of incorporating a
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Fig. 12. Garpinger trade-off plot for setpoint tracking of the outer loop

derivative action to improve system performance (see Figure
12).

We again select an Mst value of 1.4 and now determine
the controller gains from the trade-off plot with KP ≈ 0.62
and KD ≈ 0.2.

The complete control system is now validated using
trapezoidal velocity trajectory tracking (see Figure 13). The
system successfully follows the trapezoidal velocity profile,
demonstrating that the controllers are properly tuned.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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10 ·ur
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Fig. 13. Trapezoidal velocity profile response of the complete controlled
system

The results confirm the importance of tuning the inner
and outer loops differently to achieve optimal system perfor-
mance:
• The inner loop should be primarily tuned for distur-

bance rejection, ensuring that speed fluctuations and
external disturbances are suppressed effectively. The
controller should have an I component for two reasons.
Firstly, the trade-off plot shows that only then the
smallest possible IAE value at a certain robustness
requirement is met. Secondly, the I component in the
inner loop is required to obtain zero steady-state control
error.

• The outer loop should prioritize robustness and, if
necessary, setpoint tracking, allowing the overall system
to achieve smooth, accurate position control. However,
since the setpoint tracking can also be achieved by

feedforward control [5], particular attention should be
paid to robustness.

By synthesizing controller gains directly from the
Garpinger Trade-Off Plots, the system achieves a well-
balanced trade-off between disturbance rejection, robustness,
and setpoint tracking. The combination of optimized PID
tuning, and low-pass filtering for noise reduction ensures that
the cascaded control system performs with high precision in
real-world applications.

V. CONCLUSION

The tuning of PID controllers for DC drives is well estab-
lished, yet a structured step-by-step approach that systemati-
cally considers robustness, setpoint tracking, and disturbance
rejection is still lacking. This paper addresses this gap by
consolidating existing methods, particularly the AMIGO and
Garpinger approaches, and systematically applying them to
DC motor control. Garpinger’s trade-off plots are utilized
to facilitate the targeted selection of optimal controller pa-
rameters. The performance and robustness of the controllers
are experimentally validated on an Arduino-based motor
system, demonstrating enhanced setpoint tracking. Unlike
the inner loop, which is tuned using rule-of-thumb methods,
the outer loop of the cascaded control system is directly
synthesized using the trade-off plots, ensuring an optimal
balance between robustness and tracking performance. The
results highlight the practical relevance of this methodology
for industrial applications requiring high precision and reli-
ability.

REFERENCES
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Towards Automated Handling and Sorting of Garments combining
Visual Language Models and Convolutional Neural Networks

Serkan Ergun1†, Tobias Mitterer1† and Hubert Zangl1,2

Abstract— Ambitious goals set by the European Union are
aiming towards full recycle-ability of garments by 2030. Accord-
ing to the EU, 12 kg of garments are discarded by each citizen
per year. In order to process such vast amounts of garments,
automation of garment handling and recycling is unavoidable.
Automated handling and sorting of such garments is a major
challenge in the field of robotics. Current approaches specialize
in one part of this challenging task. For sorting, current
approaches use cameras and pre-trained networks with a data-
set with a pre-defined set of classes. This paper presents an
approach of using artificial intelligence (Convolutional Neural
Network and Visual Language Models) to locate and separate
garments from a pile and identifying and sorting them into
dedicated containers. This combines the advantages of both
neural network types, where convolutional neural networks
are used for grasping (segmentation and corner detection) and
visual language models are used for classification of garment
types and to help the grasp prediction network in narrowing
in on better grasp positions.

Index Terms— Garments, Sorting, Visual Language Models

I. INTRODUCTION

In recent years, the European Union has set out to combat
the huge amount of textiles being discarded every year. To
this purpose, a directive has been released stating to achieve
full recycle-ability of garments by the year 2030 [1]. To
be able to recycle garments, facilities need to sort disposed
garment according to their type, material composition and
color and detect their state of health regarding faults, unre-
movable stains or tears. Such facilities currently rely heavily
on manual labor to accomplish those tasks. Given that each
European Union citizen disposes of approximately 12 kg of
clothing annually [1], this results in substantial quantities that
require sorting. To be able to better handle this workload,
robots in combination with artificial intelligence are a viable
alternative. Such a sorting workflow can be split into multiple
tasks, starting with retrieving a garment from a pile, inspect-
ing it and sorting it according to pre-defined categories. The
robot needs to be able to differentiate between the different
garments in the pile to at least be able to pick one textile
out of the pile for individual inspection, detect which type
the garment belongs, perform an inspection of the garment
and sort it into given containers. To be able to retrieve a
garment from a pile, a first visual inspection is needed for

1Serkan Ergun, Tobias Mitterer and Hubert Zangl are affiliated
with the Department of Smart Systems Technologies, Sensors, Actu-
ators and Modular Robotics Group, University of Klagenfurt, 9020
Klagenfurt am Wörthersee, Austria, serkan.ergun@aau.at,
tobias.mitterer@aau.at, hubert.zangl@aau.at

2Hubert Zangl is also affiliated with the Ubiquitous Sensing Lab, Uni-
versity of Klagenfurt, 9020 Klagenfurt am Wörthersee, Austria

†These authors contributed equally.

Fig. 1: Illustration of the garment handling and sorting scenario:
Garments are picked from a pile (zone A) and manipulated to the
inspection desk (zone B). Each garment piece is then sorted in
the corresponding container (zone C) or discarded, if it does not
meet sorting criteria (zone D). Two RGB-D cameras (Cam 1 and
Cam 2) are used for grasp prediction and garment classification,
respectively.

a preliminary distinction of different textiles and to be able
to pick out a single object from the pile. To this purpose,
different techniques in artificial intelligence can be used. We
propose to use image segmentation and corner detection in
conjunction, in a pre-trained Convolutional Neural Network
(CNN) to be able to distinguish between different garments
and to be able to detect first optimal grasp positions. After
the textile has been moved from the pile for individual
inspection, a class needs to be assigned to the item. For this
purpose, different options are available. One option is to use
a pre-trained neural network to try to sort the garment into
a given set of classes [2]. This limits the operation, as in
such a facility you cannot be sure what types and subtypes
of garments are inside the piles that need to be sorted. We
propose to use Visual Language Models (VLMs) to match a
class to the inspected textile instead. Utilizing a VLM offers
benefits, including eliminating the need for further training
and providing autonomy from specific subsets of classes. An
additional step is needed to semantically match all detected
labels given by the VLM to the final list of classes needed
for the specific use-case. VLMs can also be used for a first
semantic state of health detection of the garment and to find
best semantic grasp positions for each given class of garment.
This helps the grasp prediction network in the next step to
be able to find better grasp positions to place the object into
the corresponding container. An overview on the complete
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handling and sorting set-up is shown in Fig. 1.
The main contributions of this paper are an evaluation

of using VLMs for classification of textiles, finding optimal
grasping positions, comparing between the performance of
using a dedicated CNN and the more general VLM and
demonstrating a use-case for this evaluation in a robotic
gripper textile sorting context.

II. RELATED WORK

Recent advances in object detection and classification
show a shift from pre-trained networks like CNNs, where a
specific list of classes is given in the training and detected to
a more general, semantic-based approach like in VLMs. One
example of a CNN is Suchi et al. [3], where in the recorded
dataset, Object Clutter Indoor Dataset (OCID), a given set of
objects and their classes are defined and can be detected by
the network. While such networks have good performance
and require relatively less hardware, there are advantages
to use VLMs for object detection and classification. These
VLMs use Zero shot object detection to be able to detect
classes by using semantics and free-text queries as input.
First advances have been made by the Vision Transformer
for Open-World Localization (OwlVit) network [4], in which
image-text models are transferred to open-vocabulary object
detection. Current advances in the field combine advantages
of both methods. Examples are GroundVLP [5], which
harnesses the visual grounding abilities from pre-trained
image-text pair models and open-vocabulary object detection
data to better detect and localize objects without dedicated
training on those classes or DINO [6], which achieves good
performance on the Common Objects in Context (COCO)
dataset by incorporating improved de-noising techniques and
anchor boxes. For robotics, the next step after detecting
objects with a sensor, e.g. a camera, is to identify suitable
positions to grasp the detected object. One example of
finding such grasping candidates is an extension to the
previously mentioned Suchi et al. [3], Ainetter et al. [7],
where the OCID dataset has been used as base to annotate
grasping positions on labeled data. The CNN combines grasp
detection with dense, pixel-wise semantic segmentation and
was tested with a parallel-plate gripper in [8] in combination
with capacitive sensing in the gripper. A special case of
robotic grasping is, if the objects to grasp have a special
shape or material such that they can only be grasped properly
at dedicated areas, e.g. a cup. One type of object like this
are textiles and garments, as due to their size or given
constraints by the task (such as robot assisted dressing) they
have the need to be grasped at dedicated positions. One
such use-case is if a garment needs to be visually inspected
for faults or current state and therefore all parts need to be
fully visible. Yamazaki [9] presents a CNN trained to detect
optimal grasp points for cloth based on shape classification
to be able to properly unfold a given textile lying on a table.
Another example of textile grasping is Fu et al. [10], where
a network is used to detect the state of the textile based
on visible corners and decides on grasping points to unfold
it. A detailed semantic description of each class of textiles

is given by the European Commission in [11]. As already
shown for object detection earlier, VLMs can also be used to
semantically detect the best location to grasp a specific type
of object, thus increasing the number of successful grasps.
LanGrasp [12] uses Large Language Models (LLMs) and
VLMs to enable semantic one shot object grasping, where
the LLM gives the part of the object which should be grasped
and the VLM grounds that information in an image. Finally, a
grasp planner plans and executes the grasp. Another example
on VLMs being used for robot grasping is Huang et al. [13],
with a focus on handover tasks of household objects between
a human and a robot. The robot uses a combination of VLM
and LLM to detect objects of given classes and semantically
detect appropriate grasping parts of the objects. As a last
step, a grounded VLM is used to segment and detect the
grasping parts of the object. Our approach introduces the
innovative use of VLMs in combination with a CNN in the
environment of sorting textiles from a highly cluttered heap
depending on given semantic classes.

III. EXPERIMENTAL SETUP

The proposed lab scale experimental setup is shown in
Fig. 1. It consists of a single modular series elastic 6-DoF
arm with a two-fingered cable gripper (type A-2085-06G)
by HEBI Robotics [14]. The finger tips are custom made
and flexible. Random garments are placed in a convoluted
pile in the initial inspection workspace. The robot is being
used to grasp and manipulate a single piece of garment
from the pile (zone A in Fig. 1) and place it on a second
table for garment type classification: underwear, shirts
(including t-shirts and polo shirts) and socks (zone B). As
the performance of the VLM is evaluated the garments are
just slightly dragged over the table edge to perform an initial
unfolding and no further flattening or optimal positioning
of the garment is done. The robot then places the garment
in the corresponding box in front of the table (zone C).
Garments, which do not fall in one of these categories, or
which are not identifiable are discarded at the back of the
table for manual inspection (zone D).
Two Intel RealSense cameras (models D415i and D455f)
are being used for capturing depth images for the grasp
prediction from the pile (Cam 1) and the inspection table
(Cam 2), respectively. The RGB stream of the D455f
was also used for capturing the input for the garment
classification.
The grasp prediction algorithm uses a CNN, which is based
on the works of [7] and [15]. The CNN has been trained
with a modified training set based on [3]. It has furthermore
been used effectively in previous works, such as [8].
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Fig. 2: Procedure of the experiment. A single piece of garment is identified by the grasp prediction algorithm (a), the robot then picks up
the garment (b) and places it on the inspection table (c). The VLM identifies the type of garment and its color (d). The grasp prediction
algorithm is then run again to identify the optimal grasp position (e). The garment is then picked up (f) and placed in the dedicated
container (g). Unrecognized or not categorized are discarded at the back of the table for further manual inspection.

The garment classification is achieved by using VLMs,
as they are able to match a semantic text input to a specific
object in the picture. Dedicated VLMs like OWL-FIT [4]
usually work by giving the network a semantic list of
objects to find, which can lead to either a reduced number
of objects detected or a long list of possible classes in the
prompt. To this purpose a VLM with a broader language
part in the model, namely Llama 3.2-Vision 11b from Meta
Inc. [16] is used via the Ollama distribution [17]. This
enables a more open prompt definition due to its bigger
training data-set, where the types of garment to be found
are not specified but the network has to match a garment
type to the textile presented in the picture. For the proposed
use-case, only the output classes of ’sock’, ’underwear’,
’shirt’ and ’unknown’ are used. A semantic assignment of
the detected sub-types to these four classes, where each
garment type which cannot be assigned to the three known
classes is assigned to the ’unknown’ class is done. This
semantic matching process uses the textile classification
specification given by the European Commission in [11].

Listing 1: Minimal Python code example for running llama3.2-
vision with Ollama

1

2 import ollama
3

4 response = ollama.chat(
5 model=’llama3.2-vision’,
6 messages=[{"role": "system",
7 "content": "You are an intelligent robotic

arm."}, {’role’: ’user’, ’content’: ’What
clothing item can you see? If your confidence
is below 85 percent, classify the type as
unknown. Classify them in the classes: Shirt,
Sock, Underwear or unknown. Just specify type
of clothing and color. which part of the
garment makes the most sense to grasp? Name one
part. Make the answer very short and concise.
In three words. Your response is garment type,
color, grasp location. Omit any line breaks or
newlines.’, ’images’: [fullPathToImages]

8 }]
9 )

The minimal code, necessary to run Llama3.2-vision
with Ollama in Python3 is shown in Listing 1,where
fullPathToImages is the location of the image on the
hard drive. The grasp prediction(s) and the VLM are run
sequentially on the processing unit,a lab PC with an 11th
Gen Intel® Core™ i7-11700KF @ 3.60GHz × 16 CPU with
64 GB of DDR4 RAM. The Graphics Processing Unit (GPU)
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Fig. 3: Sample pieces for garment classes: shirt, underwear and
socks

used is the Nvidia GeForce RTX 3060 with 12GB V-RAM.
The entire scenario is shown in Fig. 2. First, an ideal grasp
pose is selected by the CNN (a). Then the robot moves to the
selected pose and grasps the garment (b) and manipulates it
to the inspection table (c). On the inspection table, the VLM
is then run to identify the garment type, color and to return
a semantic description of the best grasping position on this
type of garment. The terminal output is shown alongside the
input image in (d). The garment type output of the VLMs
is then further refined and categorized semantically into the
four given classes. Consequently, the CNN is then run again
to identify the ideal grasp pose (e). The robot then picks up
the garment once more (f) and places it in the correct bin
(g). If the garment does not fall into one of the specified
categories, it will be discarded at the back of the table for
potential manual inspection.

IV. RESULTS

Sample pieces for each considered garment class (under-
wear, shirt, sock) are shown in Fig. 3. Further garments are
shown in Table I. A subset of the garment samples (five to
ten pieces) were placed untidily in zone ”A” (see Figure 2c).
The experiment described in section III was repeated until
zone ”A” was cleared. In total, more than 100 individual
grasps were taken.

A. Validation of the approach

The grasp prediction algorithm was previously tested and
validated in [8]. In some cases, the grasp prediction algorithm
does not return an ideal grasp pose on every attempt. In such
cases, another image is taken automatically and the grasp
prediction is repeated until a valid grasp pose is found.
During our experiments, no loss of garments during manipu-
lation occurred. However, due to the small size (”arm reach”)
of the robot, only smaller garment pieces were considered in
our experiments. Large and heavier pieces were only used
for the validation of the VLM.

B. Validation of the VLM

To validate the accuracy of the VLM a larger set of
garments were analyzed (zone ”B”). In total, 122 images
from trousers, jeans, jackets, sweatshirts were investigated
alongside our pre-determined classes shirts, underwear and
socks. Additionally, at random instances, non-garment type
objects were presented to the camera (e.g. bottom entry in
Table I).
Ten exemplary results of the garment classification algorithm
are shown in Table I. Out of these 122 images, the garment
type was correctly classified in 118 cases. The color of
the garments were correctly identified in 112 cases, caused
by inconsistent lighting conditions during the experiments.
The color information was not used in our experiments but
recorded alongside for future use, if the need arises to sort
the garments not only by type but also color. An additional
analysis was done on identifying semantic grasp positions for
each type of garment, to optionally help the grasp prediction
in narrowing in on better grasp positions for specific type of
garments. In the testing data-set, non-textiles were included
to observe the output if the prompt tells the network to
identify a given textile, when no garment is presented. As
can be seen in Table II for most cases the precision is greater
than 80%. For the non-garment objects, they were classified
correctly as ’unknown’, but a non-ideal grasping position
was returned.

V. SUMMARY AND OUTLOOK

This paper presented a method to utilize a combination
of pre-trained CNN and VLM for automated handling and
sorting of garments. Overall, the VLM is able to identify
the garment type with a precision of 96.72 %. The color
of the garments is correctly identified in 91.80 % of our
experiments. The proposed sorting setup has the capability
to scale in size and thus, productivity.
By using a serial arm manipulator with higher reach, larger
garments can be handled. Furthermore, a larger arm reach
allows more containers for sorting to be placed in the scene.
The usage of a second arm manipulator for picking up
inspected garments while the other one is grasping garments
from the pile increases productivity. Alternatively, a conveyor
belt type setup may also be considered using pushers to
slide garments in the corresponding containers. A second
processing unit with a dedicated GPU allows to run both
grasp prediction algorithms in parallel together with the
VLM to further increase productivity. The current work
can be used to include multi-point grasp for improving the
handling of bigger textiles like shirts or trousers and allowing
all-round inspection of garments for visual defects.
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TABLE I: Exemplary results of the garment classification algorithm.
The image on left is the input of the VLM. Type, Color, Suggested
Grasp Pose and Class are returned by the VLM.

Image Type Color Suggested
Grasp Pose Class

Sock Black Heel Sock

Shirt Green Sleeve Shirt

Shirt Blue Collar Shirt

Boxers Blue Waistband Underwear

Shirt Purple Collar Shirt

Jeans Blue Waistband Unknown

Shirt Blue Cuff Shirt

Boxers Blue Waistband Underwear

Trousers Grey Waistband Unknown

Unknown Blue Heel Unknown
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Towards Inclusive and Accessible Industrial Workstations by Shaping
Safe and Adaptive Human-Robot Collaboration*

Mara Vukadinovic1, Clara Fischer1, Thomas Haspl1, Bernhard Reiterer1, and Michael Rathmair1

Abstract— Human-robot collaboration combines the
strengths of human workers with the capabilities of robots,
creating opportunities to improve inclusion and accessibility
in manufacturing environments. This study investigates the
integration of adaptive workstations within human-robot
systems to close gaps in safety and diversity in industrial
settings. The presented design and safety framework
incorporates workstations with adjustable heights, flexible
tool positioning, and multimodal communication interfaces to
accommodate workers with varying physical and cognitive
abilities. Through a collaborative assembly use case, the study
demonstrates how robots can handle repetitive and physically
demanding tasks while human workers focus on skill-dependent
activities. This approach improves task efficiency and fosters
workforce inclusivity, providing a pathway for integrating
individuals with disabilities into the primary labor market.
The findings emphasize the need to shift towards adaptive,
human-centered design to ensure equitable participation in
industrial workplaces.

Index Terms— human-robot collaboration, robotic assistance,
people with disabilities, inclusive workstations

I. INTRODUCTION

In Austria, approximately one in four individuals aged 15
to 89 living in private households — equivalent to around
1.9 million people — suffer from health-related limitations in
managing daily activities [29]. The employment rate among
people with disabilities is 52.8%, slightly above the EU aver-
age of 50.8%. However, only 14.9% of these individuals are
employed in the regular labor market, as the majority of them
work in specialized environments designed to support their
needs [30]. To address this disparity, Austrian legislation
mandates that companies with at least 25 employees hire
one registered disabled person for every 25 employees. An
individual is considered registered disabled if he or she has
a degree of disability of at least 50%, as defined in § 2
of the Disability Employment Act [28]. According to § 3
of the BEinstG, disability is defined as a lasting physical,
mental, psychological, or sensory impairment that is likely to
hinder participation in the labor market for a period of more
than six months. Despite these legislative measures, many
companies do not meet these requirements. In 2023, only
23.9% of companies nationwide fulfilled this employment
obligation. Consequently, 76.1% of enterprises are subject
to compensation tax due to not meeting the mandatory
employment quote [31].

*This research was conducted as part of the SAFEIVERSE project,
funded by the KWF – Kärntner Wirtschaftsförderungs Fonds.

1All authors are with JOANNEUM RESEARCH Forschungsgesellschaft
mbH, Institute for Robotics and Flexible Production, Klagenfurt, Austria
{First Name}.{Surname}@joanneum.at

Concurrently, demographic change leads to an aging pop-
ulation, decreasing birth rates, and shifts in the population
structure. This development has led to an increase in re-
tirement age and a growing shortage of skilled workers [7].
While companies in various sectors, such as industry and
tourism, face a severe shortage of skilled workers, there
is an untapped potential for individuals who have not yet
been integrated into the primary labor market. The current
situation underscores the need to find new ways to include
people with disabilities in the workforce [15]. One approach
to overcome this challenge are so-called sheltered workshops
(SWs), which are integrative work organizations designed to
meet the specific needs of people with disabilities. In Austria,
SWs are structured as non-profit organizations that operate
separately from the regular labor market and mainly offer
simple repetitive tasks [21]. As a result, they establish a sep-
arate employment sector instead of fostering true inclusion.
SWs tend to reinforce segregation, limiting opportunities for
equal participation in the broader workforce [11].

A. Motivation and Problem Statement

Addressing the interconnected challenges of an aging pop-
ulation, a skilled labor shortage, and the underemployment
of individuals with disabilities requires a comprehensive
strategy. Promoting the inclusion of individuals with dis-
abilities can help to mitigate the shortage of skilled labor
by tapping into an underutilized talent pool [6]. Human-
robot collaboration (HRC) not only leads to increased pro-
ductivity, but also enhances participation. Robot systems can
be designed to assist individuals with disabilities, enabling
them to perform tasks that might otherwise be challenging.
Moreover, robot applications can support older or disabled
employees by handling physically demanding tasks, thus
improving ergonomics and reducing monotony [11], [8].

In the perspective of robot safety, ISO 10218, as pub-
lished in 2025, Part 1 describes the safety requirements for
industrial robots [16], while Part 2 of this standard defines
industrial robot applications and robot cells, including modes
for safe HRC [17]. In a collaborative application, the state
interaction can be reduced by avoiding collisions between
humans and robots or restricting the transferred energy in
intended or unintended contact. The second option can be
implemented by limiting the application’s power and force
so that biomechanical limits by ISO/TS 15066:2016 are
observed in contact. These thresholds and the associated
assessment procedures have now been integrated into ISO
10218-2:2025 [17]. Biomechanical limits are the tolerated
pressure and force transmitted to different parts of the human
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body during contact with the robotic system. The values
are based on studies that analyze the occurrence of pain
onset (pressure) and minor injuries, such as bruises (force)
in different anatomical regions [18]. However, these thresh-
olds are predominantly based on average percentile values,
which do not fully account for individual variations such as
age, physical impairments, or gender-related anatomical and
physiological differences. For example, differences in BMI,
bone density, and pain tolerance between men and women
can affect their sense of force and pressure loads. Similarly,
older adults or people with disabilities may require adjusted
safety parameters to mitigate risks of injury and ensure safe
interaction [4], [3], [20].

Furthermore, the European Regulation (EU) 2023/1230
on machinery requires manufacturers to carry out compre-
hensive risk assessments, e.g. according to ISO 12100:2010
[1]. A main aspect of this process is the definition of
machine limits, including operational and user restrictions
based on specific physical requirements [9]. As a result,
certain machines may not be approved for being operated by
people of different sex, ages, or with physical disabilities.

B. Contribution

This paper investigates the integration of diversity and
inclusion in the design of safe HRC. The contribution is
provided by a systematic literature review, from which a
framework for the design of adaptive and inclusive HRC is
presented. The objective is to explore how safety standards
and interaction protocols can be improved to accommodate
differences such as age, sex, and physical impairments.

The structure of the paper is as follows: First, the state-
of-the-art in inclusive HRC is analyzed. Then, our vision of
the future of inclusive manufacturing is outlined, covering
the concept and the description of an industrial application
scenario. Subsequently, the evaluation assesses the inclusivity
of the concept, identifies limitations, and suggests next steps.
The paper concludes with a summary and directions for
future work.

II. STATE-OF-THE-ART

A systematic literature review on inclusive and accessible
HRC within industrial settings revealed three key thematic
areas, which are summarized in the subsequent subsections.

A. Assistive Robotics

Assistive robotics has made considerable progress in re-
cent years, particularly in health care and home care, where
robots have demonstrated the potential to improve the au-
tonomy and quality of life of people with disabilities. There
are various ways in which physically assistive robots can
help people with disabilities. The key research areas include
assistance in navigation, feeding, and pick-and-place tasks.
Although most studies include participants with disabilities, a
significant proportion of summative evaluations involve only
able-bodied individuals, highlighting the need for more inclu-
sive and representative research methodologies. Additionally,

there is a lack of comprehensive studies exploring the real-
world deployment of physically assistive robots, emphasizing
the need for more in-context evaluations. Future research
shall focus on tailoring these systems to individual user
preferences and considering the broader social and regulatory
factors that influence their adoption [27].

B. Robot Assistance on the Shopfloor

The literature shows that robot-assisted workplaces can
support marginalized individuals in production settings by
compensating cognitive and physical deficits. In the case of
cognitive disabilities, the research by Kildal et al. demon-
strates how collaborative robots can empower assembly
workers with cognitive impairments by assisting them with
complex tasks, reducing workload, and providing task-
specific support [19]. Similarly, for physical limitations,
Arboleda et al. highlight how HRC can support people with
mobility impairments in the workplace, facilitating tasks
that require physical strength or mobility, thus enhancing
productivity and inclusion [2].

The AQUIAS project exemplifies how robots can sup-
port people with disabilities by helping them participate
in modern manufacturing. This is achieved by assigning
physically demanding tasks to robots while allowing indi-
viduals with disabilities to focus on other aspects, such as
quality control. The project focuses on creating scenarios
at the intersection of economic efficiency and participation
in meaningful work. In the first pilot area, the production
assistant ”APAS” is implemented in an integration company
where employees with severe disabilities perform assembly
tasks. The second pilot area explores different models of
HRC within an advanced manufacturing setting. The findings
show that although close HRC can improve efficiency, it
also presents challenges such as safety concerns, ergonomic
load, and limited robot processing speed. The prototype
developed addressed these concerns by incorporating height-
adjustable tables for accessibility, a laser-based safety system
to protect workers, and an integrated learning system to
support employees with disabilities [22].

Another related project, IIDEA, focuses on promoting the
inclusion and integration of people with severe disabilities
into the primary labor market through collaborative robotics.
Unlike traditional models that often relegate disabled workers
to isolated tasks or sheltered workshops, IIDEA emphasizes
human-centered, adaptive work environments at the core
of Industry 4.0. The project aims to bridge the gap by
offering training, modular robotic workstations, and mobile
demonstration units to promote awareness and adoption. By
customizing robot assistance to individual capabilities and
fostering a broad network of stakeholders, including industry,
advocacy groups, and training institutions, IIDEA seeks to
establish inclusive employment opportunities [24].

C. Design Aspects of Inclusive Human-Robot Collaboration

Key aspects in designing industrial HRC include safety,
efficiency, ergonomics, interaction, and acceptance [14], [23].
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Studies indicate positive acceptance of collaborative indus-
trial robots among people with disabilities, further emphasiz-
ing their role in fostering inclusive work environments [11].

The literature highlights capability-based approaches that
form the basis for inclusive and collaborative work envi-
ronments. Several tools and methodologies have emerged
to optimize the allocation of tasks between humans and
robots in inclusive environments and ensure that people with
disabilities receive the necessary support. One such tool
is IMBA (Integration of People with Disabilities into the
Working Life), developed by the German Ministry of Health
and Social Security. It serves as a method for comparing
the requirements of workplace tasks with human capabilities
and documenting both. However, IMBA has its limitations in
modeling dynamic workflows. Specifically, it does not track
changes in workload within workflows, which is essential
for adaptive task allocation in HRC environments [13].
To address these limitations, RAMB (Robotic Assistance
for Manufacturing Including People with Disabilities) was
introduced, which analyzes specific process steps where
individuals with disabilities may require personalized assis-
tance. This is achieved by combining the decomposition of
the process based on MTM (Method-Time Measurement)
and IMBA, allowing a uniform evaluation of the process
requirements that can be compared with the capability profile
[32]. Despite the usefulness of IMBA and RAMB, these tools
struggle to adapt to dynamic workflows. Mandischer et al.
proposed a two-stage reasoning approach for adaptive task
allocation in HRC to overcome these limitations. This system
assesses the capabilities of a worker using an ontology-based
methodology that distinguishes between factors that change
quickly (e.g. fatigue) and others that change slower and have
more gradual effects (e.g. worsening of a disease) [26].

Moreover, to ensure appropriate support for people with
disabilities, the selection of input and output devices is
essential. Weidemann et al. present an approach for selecting
suitable devices based on a person’s specific disabilities and
the demands of the work process. For example, a person
experiencing tremors after a stroke, with limited mobility in
one hand, may benefit from hand or foot buttons as input
devices that require minimal fine motor control [33].

III. THE FUTURE OF INCLUSIVE MANUFACTURING

The literature indicates that, while initial approaches have
been proposed to address the challenges discussed in previ-
ous sections, their potential can be significantly improved
by integrating adaptive workplace design concepts [25].
However, a considerable gap persists in the development of
diversity-oriented safety strategies within production envi-
ronments. Research highlights that diversity in robotics is
still underdeveloped in workplaces and its implementation is
often overlooked or not considered sufficiently [12].

The achievement of inclusive manufacturing requires a
concerted effort to develop and integrate diversity-oriented
safety strategies. This requires human-centered, safe, and
technology-supported environments designed to be adaptive
and autonomous. In particular, workspaces should be tailored

to the capabilities of the individual workers to enable them
to perform tasks efficiently and safely while considering
physical and cognitive differences. Our vision is a labor
market that maximizes the usage of human potential by
moving from a user-driven interaction paradigm to one in
which systems and work environments dynamically adapt to
human capabilities and enable seamless HRC. This includes
designing workstations with appropriate reach and move-
ment areas, performing ergonomic evaluations specific to
the individual, and ensuring universal accessibility to safety
features, such as the emergency stop button. In addition,
integrating auditory, visual, and mechanical warning signals
will improve accessibility and provide further support for
people with different sensory requirements. Furthermore, a
comprehensive risk assessment that accounts for individual
variations in risk perception will be crucial to minimizing
potential hazards and ensuring a safe and inclusive work
environment.

A. Concept

A comprehensive design and safety framework is fun-
damental to creating inclusive manufacturing environments.
Our strategy leverages advanced technologies and robot-
assisted systems, focusing on HRC to establish adaptable
workspaces. The core principle of this concept prioritizes
incorporating diverse user groups to ensure that individual
abilities are accommodated rather than relying on generic
solutions. This is accomplished through a preliminary as-
sessment of workers’ skill profiles to identify competencies
rather than limitations. For evaluating the working conditions
in human-robot workplaces, the previously described RAMB
tool is applied [32]. The evaluation considers factors such
as body posture, body movement, sensory capabilities, and
complex characteristics to assess the worker’s skills. This
process also involves analyzing job demands, workflow spec-
ifications, and task-specific constraints. Once the comparison
is complete, tasks are assigned by distinguishing between
those more suitable for human workers and those that robots
can perform to assist. This allocation ensures that tasks are
assigned in a way that optimizes efficiency and inclusivity
as much as possible.

Following task allocation, process planning incorporates
our design and safety framework, which extends traditional
process optimization by embedding aspects of workplace and
process design, risk assessment, and human inclusion.

First, we incorporate flexible workplace configurations that
can be adjusted to different physical and cognitive needs, en-
suring that workstations are ergonomically optimized for all
users. This includes adaptable work surfaces, customizable
tool positions, and universally accessible emergency controls.

Second, we aim to extend the risk assessment approach, as
scripted in ISO 12100:2010, to have a more human-centered
focus. By no means, we intend to replace the normative
approach, but we rather add parameters to be able to consider
the diversity of potential users already during the process
of risk assessment. This is supposed to result in a more
sensitive process with respect to the diversity of human
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workers in an industrial workplace. In particular, we want to
adapt two steps within the process chain of risk assessment,
the identification of hazardous situations and the estimation
of related risks. We expect that an additional parameter that
considers the skill profiles of various workers leads to a more
granular and more expressive risk assessment.

Third, we improve human-robot interaction by implement-
ing intuitive interfaces that support multimodal communica-
tion, including voice, gesture, and touch-based input. This
ensures that users with varying abilities can interact with
robot systems in a way that suits their needs.

In addition, tablet-based guidance can be incorporated
to provide accessible work instructions. These instructions
could include audio guides and visual aids to ensure that
individuals with varying cognitive abilities can easily under-
stand and follow tasks.

Finally, our framework prioritizes barrier-free access and
inclusive design principles by universal safety measures such
as multi-sensory warning signals and robots with force and
speed limitations tailored to individual risk profiles.

B. Use Case

To illustrate our approach, we present an assembly use
case from series production that showcases the seamless
collaboration between humans and robots. The process be-
gins with a Universal Robots UR5 manipulator, which au-
tonomously retrieves part A from its designated holder and
positions it for the worker. The worker’s task is to tighten a
screw in the opening on the right-hand side of part A. After
the worker completes this step, the robot sets part A down
and retrieves a new unassembled part A, placing it in front of
the worker for the same screwing task. Once the worker has
assembled both part A pieces, the robot picks up part B and
positions it in front of the worker. The worker’s final task is
to attach the two finished parts A to the left and right sides of
part B, completing the assembly. This workflow illustrates a
balanced division of labor, where the robot handles repetitive,
precise tasks while the human worker performs the assembly
steps that require more dexterity.

Figure 1 shows the robot and the collaborative assembly
workstation. The most important adaptive components of the
workstation are highlighted in green. Firstly, the autonomous
height-adjustable table enables ergonomic adaptation to the
physical requirements of the operator. In addition, the posi-
tions of the robot within the workstation can be adjusted to
suit the operator’s reach and ensure optimal interaction. This
customization also includes the positioning of the box of
screws, which is designed to be accessible to all operators,
including left- and right-handed and one-armed operators,
ensuring ease of use and involvement. Furthermore, the
proposed system incorporates adaptive human-robot inter-
action by detecting when the operator is fully positioned
at the workstation and ready to begin the task. The robot
remains in standby mode until the operator arrives and
confirms readiness to proceed. Depending on the opera-
tor’s information processing needs, the system uses various
signaling mechanisms, including visual, audible, and haptic

Fig. 1. Human-robot workstation with adaptive components, including
ergonomic adjustments, flexible robot positioning, and multimodal signaling

signals. Visual indicators are provided by a light tower on
the worktable, which uses color-coded signals to display
system status and warn of potential hazards. In contrast,
audible alerts provide immediate warnings via a loudspeaker
in the work area. Haptic signals are transmitted through a
smartwatch worn by the operator. This watch warns the user
in dangerous situations through vibrations, for instance when
a mobile robot is approaching.

The comparison between a standing human and an indi-
vidual seated in a wheelchair is presented in Figure 2. In the
right image, the table is lowered to accommodate the seated
operator, ensuring ergonomic accessibility. In addition, the
robot’s end effector is positioned closer to the wheelchair
user, optimizing reach and interaction. These adjustments
demonstrate the adaptability of the workstation in supporting
both standing and seated operators.

IV. DISCUSSION

The use case presented illustrates how adaptive work-
stations can create inclusive environments through HRC.
It shows an assembly process in which robots assist in
completing repetitive and physically demanding tasks while
human workers focus on skill-dependent assembly steps.
Several adaptive modifications have been designed, such
as adjustable heights, flexible tool positioning, and multi-
modal communication interfaces. These adjustments ensure
better ergonomics, accessibility, and usability for workers
with varying physical capabilities. In addition, tablet-based
instructions can be incorporated to support physical and
cognitive accessibility. These instructions provide clear and
tailored guidance to workers, enhancing their ability to
perform tasks independently, regardless of mental challenges.

It has to be mentioned that these are relatively small-
scale modifications. The illustrated use case does not allow
for fundamental changes, such as modifying tools, signifi-
cantly altering workflows, or introducing fully customized
task assignments. These limitations highlight that, although
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Fig. 2. Comparison of workstation adaptations for standing and wheelchair operators

the approach improves adaptability, it does not yet support
comprehensive transformation for highly diverse work envi-
ronments. Despite these constraints, small adaptations can
still have a significant impact. Even minor modifications,
such as adjusting the height of the workstation, optimizing
component placement, and providing multiple modes of
interaction, contribute to greater inclusivity and worker well-
being. For instance, an adaptive arrangement of worksta-
tion components could improve accessibility for left-handed
workers, thereby increasing comfort and overall job satis-
faction. These adjustments facilitate a more accessible and
efficient workplace without requiring a complete overhaul
of existing systems. In manufacturing, where workers are
often exposed to cognitive and physical overload, awkward
postures, and repetitive tasks, such small adjustments can
effectively reduce strain and improve productivity [5], [10].

These considerations underscore the role of adaptive work-
places in fostering inclusion while maintaining economic
efficiency. As global labor market competition intensifies,
companies are forced to implement flexible, efficient, and
sustainable workstations. Organizations must decide whether
to implement highly personalized workstations for each
employee or develop universally adaptive environments that
can accommodate a wide range of needs. A flexible and
adaptive system can ensure that workers’ abilities align
with the demands of their tasks without requiring extensive
modifications, thus increasing efficiency and reducing costs.

Another challenge is the broader implementation of adap-
tive workstations that promote social awareness. Many indus-
tries still lack a clear understanding of the benefits of inclu-
sive and adaptable work environments. Public and corporate
awareness must be raised through education and advocacy to
encourage the adoption and investment in such workplaces.
Highlighting long-term advantages, such as improved em-
ployee well-being, increased productivity, and the cultivation
of a more inclusive culture, can help organizations recognize
the value of creating environments that accommodate diverse
needs. Thus, a key impact of our presented concept is its

ability to drive greater societal awareness and recognition of
the importance of inclusive work environments.

To ensure the effectiveness of adaptive work environments,
systematic evaluation is necessary. This includes evaluating
safety features, worker satisfaction, productivity levels, and
economic impacts. In addition, it is crucial to overcome
challenges such as organizational resistance, technical limita-
tions, and financial constraints. The current framework would
benefit from extensive user testing with a diverse range of
participants, particularly individuals with different disabili-
ties. Such an approach would provide deeper insights into
usability challenges and enable data-driven improvements to
enhance accessibility and functionality. Integrating a wider
spectrum of user experiences can optimize the framework to
ensure a truly inclusive and effective design.

V. SUMMARY AND OUTLOOK

This paper addresses the gap in manufacturing environ-
ments, where safety standards and workplace designs often
fail to consider diversity and inclusivity. By integrating
adaptive workstations and HRC, this approach aims to cre-
ate more inclusive and accessible environments. Ergonomic
modifications, such as height-adjustable workstations, flex-
ible tool positioning, and multimodal communication inter-
faces, enhance usability for workers with diverse needs. In
addition, tablet-based instructions offer structured, tailored
guidance, supporting physical and cognitive accessibility.

To validate and refine such adaptations, the next steps will
include user testing on a physical workstation with a diverse
group of participants, particularly people with disabilities.
This process will involve direct observations and interviews
to assess usability, physical and cognitive workload, and trust
in the system. The results are used for further improvements,
ensuring that future workstations are more inclusive, func-
tional, and adaptable to the diverse needs of employees.
Furthermore, by developing a physical demonstrator, this
research aims to raise awareness of the potential of adaptive
workstations for industrial companies and showcase their
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benefits for inclusive labor market integration.
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An Adaptable Multi-Robot Support System for Disaster Response*

Laurent Frering1 and Gerald Steinbauer-Wagner1

Abstract— In the recent years, many use-cases have been
found for robots in disaster response operations, and many
functionalities have been developed for those robots. But in
order to facilitate the use of those robots in real operations,
their usage have to be integrated at the mission level. In this
work, we present our architecture for a multi-robot support
system for disaster response operations. The proposed system’s
goal is to integrate agent-oriented programming for high-level
decision-making with arbitrary robot platforms, refining goals
into executable robot skills that are monitored and reasoned
on. We focus on the software architecture and implementation
details and provide details on the system capabilities and on
the technologies used, and we outline the process for extending
and adapting the proposed architecture to new projects. We
discuss the different use-cases where the proposed system was
deployed, and distribute its current open-source implementa-
tion: https://gitlab.tugraz.at/D214D39B6CEB7ECC/mrss

Index Terms— Software Architecture, Multi-Robot System,
Disaster Response

I. INTRODUCTION

The use of heterogeneous robot teams for disaster response
is gaining traction, with multiple recent experiments and
deployments in different settings and with different robot
types [1], including the use of Unmanned Aerial Vehicles
(UAVs) and Unmanned Ground Vehicles (UGVs) in disaster
response scenarios.

We previously proposed a generic architecture for a multi-
robot support system aimed at providing first responders
with a centralized situational picture obtained by a human-
robot team comprising interactive goal-driven autonomous
robots [2]. We deployed and tested this system during
a field experiment simulating a firefighting operation in
mountainous terrain, and gathered results and feedback from
participating firefighters. In the chosen use case, a UAV
equipped with color and thermal cameras was deployed
in selected areas, highlighting detected hotspots. This was
followed by sending a UGV equipped with a water tank to
those hotspots, providing a water supply to firefighters in the
field.

This field experiment was successful in tackling the use-
case and rated positively by the firefighters, but also showed
some limits in its autonomy and reliability. Those encour-
aging results lead us to continue upgrading the system and
deploy it in two additional field tests, refining the software

*This work was partially supported by the Austrian Research Promotion
Agency (FFG) with the project KI-SecAssist.

1Laurent Frering and Gerald Steinbauer-Wagner are with the In-
stitute of Software Engineering and Artificial Intelligence, Graz
University of Technology, Graz, Austria. laurent.frering,
gerald.steinbauer-wagner@tugraz.at

architecture for easier use and adaptability to new use-
cases. The system matured into a software stack displaying
different functionalities stemming from the requirements
elaborated with end-users. Mainly, it integrates robust and
proven technologies (such as MQTT for inter-process com-
munication), provides a streamlined process to be adapted
to new projects with different robots and communication
protocols, and makes use of a Belief-Desire-Intention (BDI)-
based reasoning scheme for goal-driven reasoning [3].

Building on this process, we propose here an updated ver-
sion of this system architecture named MRSS (Multi-Robot
Support System). The focus is on the software engineering,
detailing the different modules and communication technolo-
gies. We show that MRSS is modular, and can be integrated
with arbitrary robots and communication protocols. We also
highlight its ability to integrate high-level goal-driven reason-
ing with actionable robot skills. We go over each component,
detailing the design choices and implementation details. We
also provide an open-source implementation of this system
to help with future field robotics deployments.

Our goal is to propose a flexible architecture leveraging
agent-based reasoning and multi-agent monitoring, able to
be easily adapted to varied projects. This leads us to leave
some implementation to the project developer, in particular
regarding the communication with external components. To
facilitate such adaptations, a streamlined process for extend-
ing the system to new projects is presented, focusing on
isolating the necessary changes to specific parts and outlining
the required tasks and their rationale. We thus aim at striking
a balance between robustness and flexibility.

Finally, we detail different deployments of the proposed
architecture and how it allowed end-users to manage complex
robot systems in the field.

To summarize the contributions, we propose a software
architecture for a multi-robot support system designed in the
context of disaster response, facilitating the integration of
autonomous robots with external components. We detail the
different modules and provide an open-source implementa-
tion, and detail how they can be adapted to different use-
cases by showcasing past deployments. As an additional
byproduct, the reasoner component showcases how to in-
tegrate the Jason BDI platform [3] with MQTT to easily
integrate with external components to generate percepts and
realize blocking actions.

II. RELATED WORK

Over the last few years, many efforts have been made to
deploy robot teams in disaster response scenarios. In addition
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to the ones mentioned earlier, we refer the reader to our
previous paper for an overview of those [2].

We focus here on projects and related work developing
multi-robot system applicable to disaster response scenarios
and providing different levels of reasoning.

The SHERPA project [4] had very similar interests, explor-
ing different interaction modalities and control levels with
heterogeneous robot teams. The main difference is their focus
on teams composed of one human and multiple robots, with
direct physical interaction and co-presence. While here the
humans and robots may act close to each other, the focus is
on the mission level, with centralized decision-making and
the ability to directly interact with the robots if necessary.

The NIFTi project [5] focused on designing a user-
centric system for multi-human multi-robot cooperation, with
realistic field deployments. They iterated over the design
over the course of the project, converging towards a robust
architecture that proved successful in deployments. However,
their system differs to ours by focusing on small robot teams
and user-centric semi-autonomous robot skills, whereas we
propose a more scalable system with less interaction. In
addition to this difference in scope, there is a difference
in specificity, as their system is a fully mature solution
with tightly integrated components. Our system is less rigid
(though less robustly designed for a given task), providing a
platform for future developments and focusing on adaptabil-
ity to different projects.

More recently, Copilot MIKE [6] is an assistant system for
multi-robot operations, deployed in the DARPA Subterranean
Challenge. It provides well-defined levels of autonomy for
task automation, and makes use of a modular scheduler
component. While similar to us, we differentiate between
higher and lower level goal management, and provide mod-
ular interfaces to facilitate reusability.

More generally, the authors of [7] realize a survey of
recent multi-agent human-robot interaction systems. They
classify those systems in terms of team size, team composi-
tion, interaction model, communication modalities, and robot
control. They highlight current challenges that are in line
with our objectives, such as understanding better the factors
influencing workload and situation awareness in multi-human
multi-robot teams, the impact of having heterogeneous robots
with varying levels of autonomy on human factors, and the
importance of scalability and transparency.

III. PROPOSED ARCHITECTURE

MRSS contains four main components interacting with
each other, including the robots or agents. The next para-
graphs will describe the components’ functions and inter-
communication, with the full diagram available in Figure 1.

The World Model centralizes and processes the data from
different sources, namely the User Interface for newly cre-
ated objects, the Task Management System for robot status
data, and the robots themselves for high-bandwidth data such
as image streams and direct control commands. In general,
the data is processed and stored for future use by the different
components, with the World Model acting as a single source

Fig. 1. Overview of the full system architecture. We focus on the Task
Management System highlighted in green, and on how those components
can be adapted to interact with different external modules.

of truth for the system. It is also equipped with rules dealing
with current and new data, used to generate events for the
Task Management System.

Those events are converted by the Reasoner submodule
into actions for the robots to perform, with possible function
calls to external modules during the processing. The actions
refer to low-level goals, which are then assigned to one or
more robots, and refined into actual robot tasks that the
individual robots are equipped to perform. For example,
the initial event could be triggered by a UAV detecting a
hotspot; the Reasoner would refine this into an action for
providing water close to the area, after checking that there
is currently none in the vicinity. This action is then assigned
to an available UGV, which receives the task of going to the
corresponding area. In this way, the initial event is refined
into more concrete operations at every level. In order to
ground symbols into actual data, the World Model can be
queried at any point in time. The Task Management System
also monitors task execution and robot state, providing this
information to the reasoner and World Model.

As shown in the figure, the User Interface is used to
display data from the World Model and generate commands.
In general, this information would go through the World
Model before being forwarded to the Task Management
System. This can also be bypassed in applications where the
User Interface may be used to query non-critical information
at runtime that is not planned to be used otherwise, for
example to snap a picture of the current robot camera view.
The same is true for the robot data. Information that is only
to be used by the User Interface can be forwarded directly to
it. In particular, those mechanisms are important for direct
teleoperation, as it would often be the case that introducing
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the World Model in the middle of each operation would
introduce undesirable latency. In order to safely switch to
teleoperation, an event is initially generated so that the Task
Management System can suspend all the actions currently
assigned to the given robot. When it is notified about the end
of the teleoperation, the robot is again considered available
and the relevant actions are resumed.

Finally, the robots (or agents, as this architecture could
easily accommodate non-embodied agents) are equipped
with the ability to autonomously realize the tasks defined
for this application, and provide feedback on their progress.
They should also be able to update on their current state and
communicate with the World Model or the User Interface
directly for high bandwidth or low latency data.

In the proposed version, MRSS is able to consistently
monitor a fleet of robots and react to changes in state or
external events. The communication between the modules is
thought to avoid conflictual commands, by centralizing the
data in the World Model and minimizing the communication
points between the different modules. It also allows for
direct control of arbitrary robots, in an integrated way with
autonomous decision-making.

IV. IMPLEMENTATION DETAILS

We focus for the rest of the paper on detailing the
Task Management System, responsible for the processing of
external events and the allocation and monitoring of robot
tasks. We will detail how it is implemented, and how it
can easily be adapted to different robots, user interfaces, and
world models by using modular adapters.

A. Architecture Setup and Communication

Every component of the Task Management System is run-
ning in a docker container, and they communicate with each
other using MQTT (via an MQTT broker also running in a
docker container). This allows for portability and isolation,
and MQTT provides a proven and configurable framework
that is reliable and easy to inspect and log. Apart from the
Reasoner, the components are implemented in Python (ver-
sion 3.1+). This choice was made to facilitate implementing
project-specific modules, as Python3 provides many libraries
implementing commonly-used communication protocols.

We will now detail the format of the messages exchanged
internally between components. The External Events Man-
ager receives the external events, which are defined as
arbitrary messages with a mapping to first-order predicates
using a project-specific adapter. Those first-order predicates
represent the Reasoner Events, and are encoded as strings
and sent over MQTT to the Reasoner. The Reasoner in-
terprets those predicates as BDI percepts, which are re-
fined into goals fed into the agent program. The outputs
of the agent program are actions, which represent lower-
level goals (either achievement or performative [8]) that
the robot team can realize in the environment. They are
also defined as first-order predicates and augmented with a
Universally Unique Identifier (UUID) and a state variable
representing the completion status. The actions are then sent

to the Robot Communication Layer, which refines them into
tasks, monitors their execution, and updates their status.
The tasks are project-specific parameterized robot-specific
skills to be executed, represented by the state machine
defined in section IV-E. Finally, the Robot Communication
Layer communicates with the Symbol and Data Module to
forward it newly received robot data and send it requests to
ground abstract objects IDs into python objects. Similarly,
the Reasoner is also able to communicate with the Symbol
and Data Module as an interface to call external functions.
The Symbol and Data Module communicates with external
functions and components using project-specific adapters.

The Docker Compose utility is used to easily start the
whole stack. This way, every component is started at once
and automatically configured for a given project.

B. External Events Manager
As discussed above, the External Events Manager is a

Python-based component providing project-specific adapters
for converting events with arbitrary representations and com-
munication protocols to first-order predicates encoded as
strings and sent over MQTT. It takes the shape of a python
package, whose main functions are first to load an MQTT
publisher to communicate with the other components, and
second to load the project-specific adapter responsible for
forwarding external events by using the MQTT publisher.
This is done by making use of Python’s dynamic import
capabilities, to import the right module at runtime given the
project name received from the Docker Compose configu-
ration. The project-specific module implements an External-
Adapter class that has access to the MQTT publisher, but
otherwise has the responsibility to implement the custom
logic to interpret the project events.

C. Symbol and Data Module
The Symbol and Data Module is similar to the External

Events Manager, as it is mostly responsible with providing an
adapter from external components to the Task Management
System. It is also implemented as a Python package dynam-
ically loading a project-specific module enabling bilateral
communication to the internal (via MQTT) and external (via
arbitrary communication protocols) components.

It manages requests over MQTT from the Reasoner and
Robot Communication Layer, and also processes robot data
received from the latter. On the other hand, it has to manage
answers from the World Model and external functions over
project-specific protocols.

The DataLayer class it implements thus provides MQTT
callbacks triggered when receiving requests for external
function calls, for grounding data via the World Model, and
when receiving robot telemetry to be forwarded to the World
Model. The exact list of callback functions and internal logic
is flexible, as long as the module keeps track of the requests
identifiers to send back the correct answer.

To enable effective symbol grounding, it is assumed that
objects in the World Model expose relevant identifiers or key
attributes to be used by external queries. Those can then be
used in reasoning and for retrieving the linked data.
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D. Reasoner

In order to provide high-level goal-driven reasoning, the
Reasoner makes use of Agent-oriented programming. More
specifically, we make use of the Belief-Desire-Intention
(BDI) architecture that has a proven track record in providing
complex goal-driven multi-agent systems. Fully detailing
those concepts and their history is out of scope for the current
paper, so we redirect the reader to the following review on
those topics [9].

Following our previous work, the Jason platform BDI
implementation [3] is chosen for its extensibility. Jason is
implemented in Java, and the agents are programmed using
the AgentSpeak(L) [10] agent programming language. An
example AgentSpeak(L) program is shown on Listing 1,
covering a simplified version of the program used in one
of the use-cases that makes uses of simultaneous prioritized
goals.

In order to integrate Jason into the architecture, we had to
implement a few adaptations. First, we run it on a docker
container as the other components. Second, we wrote a
custom Jason environment that instantiates an MQTT client.
This client is used to convert the events from the External
Event Manager into BDI percepts (i.e. the ”inputs” of the
agent program). Finally, we implemented a custom logic for
the BDI actions: once selected by the agent program, an
action is equipped with a UUID and forwarded over to the
Robot Communication Layer using MQTT. An asynchronous
latching mechanism is then used, so that the action is block-
ing until the latch is released. Another MQTT subscriber
listens to feedback from the Robot Communication Layer,
and releases the latch so that the action succeeds or fails
according to the received feedback. Finally, a specific action
named rcl goal management bypasses this mechanism, and
is used to directly inform the Robot Communication Layer
of meta action commands such as cancelling or suspending.

This way, we have a straightforward integration of the
BDI agent program into the overall architecture, with actions
naturally blocking until the underlying tasks either succeed
or fail.

E. Robot Communication Layer

The Robot Communication Layer is maybe the most
complex component of the architecture. It receives new
action commands from the Reasoner via MQTT, refines them
into skills, and monitors their execution on the robots. It also
communicates with the Symbol and Data Layer to forward
robot data to the World Model, and to request the grounding
of data or external function calls.

Once again, this component is implemented as a Python
package, dynamically loading a project-specific module.

At the basic level, the Robot Communication Layer pro-
vides an abstract class to implement skills. Taking inspiration
for existing skill models [11], skills are represented as a
simple state machine progressing between the Start, Run,
Interrupt, and Finish states. They can also acquire and release
resources, though this mechanism was not yet tested in the
deployments. A SkillManager class is available to interface

/* Initial beliefs */
isuav("r1").
available("r1").
/* Percepts */
+area_goal_received(G,P)[source(percept)] : true <- !

coverarea("d1", G, P).
+goal_cancelled(G)[source(percept)] : currenttask(R,G,_) &

isuav(R) <- -currenttask(R,G,_); .drop_intention(
coverarea(R,G,_)); +available(R).

+prioritychange(G,P)[source(percept)] : .intend(coverarea(
R,G,P)) <- .drop_intention(coverarea(R,G,P)); !!
coverarea(R,G,P).

/* Plans */
+!coverarea(R, G, P) : isuav(R) & available(R) <- -

available(R); +currenttask(R, G, P); cover(R, G); -
currenttask(R,G,P); +available(R).

+!coverarea(R, G, P) : isuav(R) & not available(R) &
currenttask(R, H, Q) & P>Q <- -currenttask(R,H,Q); +
currenttask(R,G,P); .drop_intention(coverarea(R,H,Q))
; !!coverarea(R,H,Q); cover(R,G); -currenttask(R,G,P)
; +available(R).

+!coverarea(R, G, P) : isuav(R) & not available(R) <- .
wait(2000); !!coverarea(R, G, P).

Listing 1. An example BDI Agent code for managing a single UAV with
goal priority and cancellation. The Percepts are obtained via the External
Event Manager, and respectively generate a coverarea goal, cancel an
existing goal, or change the priority of an existing goal. The plans implement
the behaviours for a coverarea goal: either sending the cover action to the
Robot Communication Layer if the UAV is available, cancelling a previous
lower-priority goal if necessary, or waiting and retrying if there is a current
higher-priority goal.

with existing skills, running them in separate threads and
managing their transitions. The individual skills and their
behavior are left to the project programmer.

When an action is received, it is refined according to
project-specific ”recipes”: a specific list of skill is instan-
tiated, and data may be retrieved either from a previous
execution (e.g. last waypoint reached for an area coverage
skill), or by making a request to the Symbol and Data Layer.
Each skill of the action is then started, and continuously
monitored as part of the main loop of the module. The default
behavior is akin to a logical AND: the action succeeds if
all of its skills succeed, and fails if any of its skills fails.
This can however be customized for each action by the
developer. Once an action fails or succeeds, arbitrary data
on its execution may be stored for future reference and the
final action status is forwarded to the Reasoner over MQTT,
so that the corresponding BDI agent plan can progress (or
fail). Lastly, when the special rcl goal management action
is received from the Reasoner, the corresponding action is
directly transitioned to the corresponding state. This allows
the Reasoner to bypass the normal behavior of the Robot
Communication Layer if necessary in the high-level reason-
ing (for example, to directly interrupt an action or make it
succeed).

V. ADAPTATION PROCESS

We now detail and summarize the process for adapting
MRSS to a new project or use-case. We go over all the
parts that may be changed, highlighting the reasoning and
specifications. A summary of this process can be seen in
Table I.

To facilitate this process, a default project is implemented,
providing a template for every part to be changed.
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The first step is to create a new Docker Compose file
for the project. The file should be named docker-compose-
{project name}.yml (with {project name} to be replaced by
the project name) in order to be conveniently started by the
companion script which manages the clean starting, stopping,
and rebuilding of containers. Using a separate Docker Com-
pose file lets the components use different containers and
images and allow for additional customization. The Docker
Compose file can fully reuse the default one, but the user may
modify it they need additional components to be started, or
if they wish to use project-specific Dockerfiles instead of the
default ones.

For the Event External Adapter, the user has to cre-
ate a new module in the external adapters folder named
{project name}.py. Similar to the default template, this mod-
ule should implement an ExternalAdapter class, making use
of the provided MQTT client to publish the Reasoner events.
This class act as an adapter with the project-specific event
representation and communication protocol.

Adapting the Reasoner consists only of adapting the
Jason-related files. This includes the {project name}.mas2j
file, which should simply point to the agent file (and any
addition that a knowledgeable Jason developer may use).
The agent file, {project name}.asl, is a standard Jason agent
program. The only specific requirement is that, by default,
it is assumed that the Reasoner performs action assignment
to a specific robot. This means that actions are represented
as first-order logic predicates in the shape action(robot id,
goal id). If the project requirements are different, this can be
changed; however the Robot Communication Layer’s action
callback will need to be changed accordingly (see below).

For the Robot Communication Layer, the user has to create
the project module rcl {project name}.py implementing the
RobotCommLayer class in the projects folder. We suggest
also creating a rcl {project name} skills.py module in the
same folder to separate the main code from the skills
definitions. To implement the skills, it is necessary to import
and inherit from the Skill class from the rcl skill model.py.
Each skill should have a custom implementation of the start,
run, finish, and terminate functions. The RobotCommLayer
class can be templated from the default one, but the user has
to adapt the refine action function with the project-specific
action refinement recipes (i.e. which skills are started with
a given action). Optionally, the user can adapt the actions’
termination conditions in the check action status function,
and has to adapt the actionCB callback function if the action
representation in the Reasoner was changed.

Finally, the Data Layer simply requires a module in the
projects folder implementing the DataLayer class. Similar
to the default template, this class should implement MQTT
callbacks for receiving requests and robot data from the
Robot Communication Layer. Those callbacks should trigger
the necessary communication to forward the requests to
external components and populate the world model.

Fig. 2. Water transport UGV (top-left), hotspot recognition UAV (top-
right), and use-case diagram for the first experiment, taken from [2].

VI. DEPLOYMENTS

Multiple iterations of this architecture were deployed over
the last couple years in different projects. An initial prototype
was used the first field tests of the KISecAssist project [2].
There, Austrian firefighters had access to a User Interface
for managing one UAV and one UGV in a mountain wildfire
scenario. They could define areas for the UAV to cover and
map, where it may also detect hotspots. Those hotspots could
then be used as targets for the UGV to navigate to. The
UGV was equipped with a water tank, and firefighters could
pump water out of it. Additionally, the UAV was able to
interrupt its tasks to go back to the home base when its
battery was low, and continue where it left off afterward. The
UGV also automatically came back to the home base when
the water level was low. All the goals could be sent with
priorities, and the robots were able to suspend and resume
goals accordingly. Pictures of the two robots and the use-case
diagram for the experiment are shown on Figure 2.

This experiment used the technologies highlighted above,
but this first version was not designed for customization and
was therefore not containerized, and was implemented only
for this use-case. The communication with the User Interface
and the World Model was done via Rest API calls. The UGV
was controlled via MQTT, and the UAV via MAVlink. Even
though this first experiment highlighted different technical
problems, it was still relatively successful and received an
encouraging evaluation from the firefighters. It managed to
showcase how it was possible to integrate all the components
together with different communication technologies.

As a second step, MRSS was used as part of the
AMADEE-24 Mars analog mission taking place in Armenia
[12]. This experiment used a single mobile manipulator
equipped with different sensors. For this application, the
architecture was refined, making use of docker and providing
insights on its adaptability by applying it to another use-
case. There, the system communicated to a PostGIS database
and to the robot via MQTT. The reasoner was responsible
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TABLE I
SUMMARY OF THE ADAPTATION PROCESS TO NEW PROJECTS. PARTS IN ITALIC ARE OPTIONAL AND ARE RELATED TO DEEPER CHANGES TO THE

SYSTEM. PROJECT NAME IS TO BE REPLACED WITH THE PROJECT NAME.

Component Files to create Specific parts to adapt

Docker Compose docker-compose-{project name}.yml additional components
custom Dockerfiles

Event External Adapter {project name}.py ExternalAdapter class

Reasoner {project name}.mas2j
{project name}.asl custom action definition

Robot Communication Layer rcl {project name}.py
rcl {project name} skills.py

skills inheriting from Skill class
actions refinement process in refine action function
actions termination conditions in check action status function
action callback in actionCB function

Data Layer dl {project name}.py MQTT request and data callbacks

for checking the legality of a given action according to
the operational requirements. This second deployment of
the proposed system was overall simpler in the number of
technologies to integrate and in the high-level reasoning, but
it highlighted how the system could be adapted in another
use-case, with different requirements.

Finally, the last deployment was made for the final tests
of the KISecAssist project. There, similar technologies were
used as in the first deployment, but the system was fully
updated according to the definitions above. The use-cases
were also updated following firefighters’ requests, notably
including the requirement to directly teleoperate the UGV.
This was straightforward to implement by opening a direct
HTTP connection from the User Interface to the UGV. To
maintain safety, the User Interface first notifies the Task
Management System of the switch to direct teleoperation.
This leads the Reasoner (and then the Robot Communication
Layer via the rcl goal management action) to suspend all
existing goals relating to the UGV. Then, a specific skill is
used to switch the UGV to direct control mode. Once the
teleoperation is done, the user would move to a safe spot
and manually trigger the switch back to autonomous control
on the User Interface. This lead the reasoner to resume all
suspended goals so that the robot could proceed naturally.

Adding such a function highlighted the flexibility of
MRSS. Indeed, by relying on the goal and concurrency
management of the system, this behavior could be added
with only a few lines of code in the expected modules and
with very minimal debugging.

VII. CONCLUSION

We showcased and detailled a system for multi-robot
control in practical deployments. The proposed architecture
and implementation result from an iterative design, based
on requirements by end users and considerations of software
engineering principles. The main benefit of the system is its
capacity to blend agent-oriented programming for high-level
control with task-level robot control, in a flexible way that
provides clear guidelines to adapt it to different projects. The
proposed system was tested during field experiments in three
different occasions, allowing for iterating over the design and
adapt it to different use-cases. We plan to continue using and
updating the system for new projects and to accommodate

new capabilities such as resource management at the skill
level. Moreover, the system would benefit for an integrated
monitoring and debug tool, making use of the internal MQTT
messages and providing test procedures.
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DOPS: Drone Optimized Performance Score for Evaluating Real-Time
Tomato Ripeness Detection

Ylli Rexhaj1 , Roni Kasemi 2, Lucas Lammer3

Abstract— In recent years, deep learning (DL) has emerged
as a promising tool to detect ripeness or diseases in different
types of plants, which helps farmers monitor crop health and
determine the optimal harvest times. However, a significant
challenge is the integration of these DL models into drones
(UAVs) due to low onboard computing capacity, forcing the
images captured by UAV cameras to be transmitted to ground-
based processors, introducing delays relying on wireless data
transmission that compromise real-time identification and affect
the accuracy and efficiency of real-life classification. In this
study, we present a new metric called Drone Optimized Perfor-
mance Score (DOPS) to optimize the performance of real-time
Tomato Ripeness Detection, taking into consideration accuracy,
frames per second (FPS), and latency. We use a systematic
methodology where our research includes an approach in the
model training phases and also in the deployment phase of
two CNN models, MobileNetV2 and ResNet50, with a main
focus on evaluating key performance metrics for classification
from drones and integrated cameras. Initially, the lighter
model MobileNetV2 proves to be more effective for real-time
applications based on DOPS evaluation, but after applying
a series of optimizations to ResNet50, which is a resource-
intensive model, we can maintain its superior accuracy of 98%,
but also outperform MobileNetV2 in DOPS evaluation with
higher FPS and lower latency, proving that resource-intensive
models can also be optimized for real-world deployment.

I. INTRODUCTION

Agriculture has long been a vital pillar of society, ensuring
both economic sustainability and food security since the
beginning of humanity. The Food and Agriculture Orga-
nization (FAO) predicts that by 2050, there will be more
than 9.73 billion people on the planet, and by 2100, there
may be 11.2 billion. As a result, the food sector is under
pressure to provide the rising demand for food [1]. To
solve these problems and boost production and efficiency,
the advancement of Artificial Intelligence (AI) and Machine
Vision (MV) are playing a crucial role [2].

Many agricultural practices have been significantly ad-
vanced through the integration of AI and Machine Vision
in precision agriculture, and according to S. Jinya et al
[3] one of the new developments is the integration of AI
with Unmanned Aerial Vehicles (UAVs) to achieve higher
productivity in special, large or untargeted spaces, minimize
the cost, and automate the process. Drones or UAVs equipped
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with high-resolution cameras and sensors have emerged as
very valuable tools to capture detailed images and gather
important crop data, which, when combined with AI, help
farmers monitor crop health and determine the optimal
harvest times [4],[5],[6].

Although numerous research studies have been done on
the detection of ripeness or diseases of vegetables or fruits
using machine vision and deep learning (DL) [7],[8], [9], the
key challenge is deploying these DL models on UAVs due to
limited onboard computational capacity, requiring the images
captured by UAV cameras to be transmitted to ground-
based processors for analysis, introducing delays relying on
wireless data transmission that can compromise real-time
identification and affect the accuracy and efficiency of real-
time classification [10], [11], [12]. To tackle the existing
problems we present a new metric called DOPS - Drone Op-
timized Performance Score to optimize the performance of
real-time classification of tomato ripeness taking into account
accuracy, frames per second (FPS), and latency. Real-time
and low-latency classification are crucial in precision agri-
culture for timely decisions affecting crop health, yield, and
resource optimization, enabling targeted interventions and
minimizing damage [13]. The research conducts an analysis
to compare how a lightweight model MobileNetV2 [14][15]
and the resource-intensive Convolutional Neural Network
(CNN) model ResNet50 [16][17] perform on two setups:
a drone equipped with an onboard camera that captures
aerial video and streams it to a ground-based processing
unit, and a laptop using its built-in webcam in a controlled
indoor environment. The study also investigates how these
models should be optimized to achieve higher DOPS. The
key contributions of this paper are:

• Introduction of DOPS as a Novel Evaluation Metric:
The Drone-Optimized Performance Score is introduced
to evaluate model performance on edge-device drones,
integrating accuracy, FPS, and latency for real-time
applications.

• Benchmarking CNN Architectures for UAV-Based
AI: We systematically compare MobileNetV2 and
ResNet50, identifying the best-performing architecture
for drone-based AI applications.

• Optimization of ResNet50 for Real-Time Performance:
ResNet50 undergoes targeted optimizations, including
input size reduction, layer freezing, and mixed preci-
sion training, improving efficiency for real-time UAV
applications without sacrificing accuracy.

The paper proceeds as follows. The related work can be
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found in Section 2. Our method for the experimental setup,
training phase, and DOPS evaluation measure is described
in Section 3. The results of the evaluation phase, the de-
ployment phase in a real-time application, and the model
tuning for improved performance are shown in Section 5. A
summary of the results and a proposal for further research
are presented in Section 6.

II. RELATED WORK

Rejeb et al. [18] states that drones are changing the
agricultural industry by improving efficiency and operational
costs. Drones are used to monitor diseases, reducing pesticide
usage and the need for human inspection of the crops.
Image and sensor technologies in UAVs (Unmanned Aerial
Vehicles) allow farmers to precisely monitor crops and detect
diseases early, reducing the need for human labor. However,
their study primarily offers a bibliometric overview and
does not address practical aspects of deploying affordable,
low-cost drones or the feasibility of running algorithms on
external computing devices rather than onboard hardware.
Rajagopal and Murugan [19] use AI-powered drones to de-
tect diseases in cashew trees. MobileNetV2, a deep learning
model, is used to scan photos and pinpoint diseases in
their early stages to minimize damage to the trees. Egi et
al. [20] designed a system that processes drone footage to
identify and count tomato flowers and fruits. Their method
uses YOLOv5 [21] for object detection and Deep-Sort for
tracking. While this system works well for estimating how
many fruits and flowers are present, it is focused on counting
rather than analyzing ripeness. Hobart et al. [22] shows an
example of a low-cost drone paired with a consumer-grade
RGB camera to detect ripe fruits, demonstrating the potential
for affordable solutions in agriculture monitoring with UAVs.
While their work focuses on apples, similar approaches
can be adapted for other crops, including tomatoes. For
tomato ripeness classification specifically, Wang et al. [23]
introduces a tomato ripeness detection system based on an
existing detection framework (RT-DETR) [24], which they
adapt to be more efficient. Khan et al. [25] introduce a tech-
nique that combines CNNs with transformer-based models
for tomato ripeness classification. Zhang et al. [26] alters
YOLOv8 [27] in a different investigation to manage intricate
ripeness detecting settings. Although all three models are
effective in classifying the ripeness of the crops, they are
not developed to run on the lower-end hardware of edge
devices. Hernández et al. [28] investigates a less compute-
intensive method to deal with this by classifying tomato
ripening stages using YOLOv3tiny [29]. Their approach tries
to find a compromise between accuracy and computational
requirements. Therefore, they only use data from a very
controlled environment, which makes the model less suited
outside of controlled environments.

III. OUR APPROACH: DOPS

Although ripeness detection is very critical, the main
objective of this research is to tackle the existing problem of

CNN models in real-time applications. This research is struc-
tured into two significant phases: the model training phase
and the real-time deployment phase. In the initial phase, we
concentrate on training the models and assessing the per-
formance of two architectures, MobileNetV2 and ResNet50.
We conduct a comparative analysis of their accuracy before
testing them in real-world scenarios. The subsequent phase
involves deployment, during which we introduce a new
metric known as DOPS to evaluate the effectiveness of real-
time applications. In this phase, we compare the models
using two distinct camera setups: a drone-mounted camera
and an integrated laptop camera. This methodology addresses
existing challenges related to the classification of wirelessly
transmitted frames.

A. Experimental Setup

DJI, in collaboration with Intel, created the compact,
reasonably priced DJI Tello, a fully programmable drone that
records 720p HD video with its 5-megapixel camera [30].
Due to the restricted processing capability of the drone’s
onboard processor, direct integration of DL models is not
feasible. In this instance, the Tello functions as an aerial
imaging tool, gathering visual information and transmitting
it in real time to a system on the ground (a laptop in this
case). This enables the drone to concentrate on gathering
data while the laptop’s computing capacity is used to run
complex AI models for tasks like classifying the ripeness of
tomatoes.

The drone-captured frames are sent in real time to a
ground-based laptop with powerful processing capabilities.
To better compare the two setups, the laptop also has a 720p
HD resolution camera, which allows for a better comparison
of how well the two models work with various image sources
using the same computational framework.

Fig. 1. Experimental Setup

B. Model Training Phase

The models MobileNetV2 and ResNet50 are trained using
a small dataset of 711 images, of which 294 are of ripe
tomatoes, 302 are of unripe tomatoes, and 115 are for the
background to minimize false detection in the background.
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Fig. 2. Training and Validation Accuracy

Fig. 3. Comparing Confusion Matrix

Both models are trained for 28 epochs using 569 of the
dataset’s images for training and 142 for validation. Im-
ages of 512x512 pixels are used to train the ResNet50
model, while 224x224 pixel images are used to train the
MobileNetV2, which is the primary difference between the
models. Validation accuracy and loss metrics are used to
moderate the two models’ training. As we will discuss later,
the model’s accuracy and inference latency are impacted by
the disparity in using different image size inputs. The training
and accuracy curves are illustrated in Figure 2. Starting with
a lower initial accuracy, the MobileNetV2 gradually im-
proves, reaching 93% validation accuracy, whereas ResNet50
demonstrates a faster rate of convergence and reaches a
higher validation accuracy of 99%. The key difference is
that the ResNet50 works better on larger input sizes and
contributes to better feature extraction and discrimination
between classes.

During training, both models showed a steady decline in
training and validation loss. ResNet50 had a lower and more
stable validation loss, indicating a strong fit. MobileNetV2
showed more fluctuations, which, while less stable, can
help the model avoid sharp, narrow solutions in the loss
landscape. Prior work [31] suggests that flatter solutions tend
to generalize better to unseen data.

We look at the confusion matrix for both models in Figure

Metric MobileNetV2 ResNet50
Accuracy 0.93 0.99
Macro Avg F1 0.94 0.99
Weighted Avg F1 0.93 0.99

TABLE I
PERFORMANCE COMPARISON

4 and a summary of important performance metrics in Table
1 to further assess how well the two models perform. Because
of its deeper architecture and larger input size, ResNet50
performs better than MobileNetV2 across all evaluation
metrics, according to the results of training both models. This
advantage, however, comes at the expense of higher latency
and computational demand, as MobileNetV2, a lightweight
model, shows a competitive performance.

C. DOPS

DOPS is a metric that balances accuracy, FPS (Frames
per Second), and latency to evaluate a model’s effectiveness
in real-time applications. In this case, we use the DOPS
metric to compare models in different environments such
as laptop vs drone, and also optimize the models for better
deployment on real-time applications, where accuracy indi-
cates the classification accuracy of the model, latency (ms) is
the time taken for a single inference, including preprocessing
and post-processing and FPS measure how many images the
model processes per second.

DOPS =
Accuracy×FPS

Latency
(1)

Different deployment environments prioritize different fac-
tors for example in cloud-based applications, accuracy, and
FPS are more important as computational resources are not a
constraint, but on the other hand in low-power edge devices
such as drones, latency, and power consumption are critical,
making efficiency a key factor, adding a weight assigned to
each parameter based on the real-time application. . However,
detailed power consumption analysis is left for future work
and will be integrated in subsequent stages of development.

IV. RESULTS

The evaluation of deep learning models for real-time
application requires a comprehensive analysis beyond tra-
ditional accuracy-base metrics, as introduced in the training
phase section. So, using DOPS, we analyze the real-time
performance of MobileNetV2 and ResNet50, ensuring the
model’s reliability and practical deployment constraints, such
as FPS and latency, which play a critical role in real-world
applications.

A. Deployment Phase

Using two different camera setups, the drone-mounted
camera and an integrated laptop camera, the deployment
phase concentrates on testing the two models’ real-time
tomato ripeness detection performance. The drone itself does
not perform any onboard processing, instead, it operates as a
mobile image acquisition platform, transmitting frames wire-
lessly in real-time to the laptop from an aerial perspective.
To ensure consistency, all image processing is carried out
on a laptop equipped with a dedicated GPU. In contrast, the
laptop setup eliminates any wireless transmission delay by
using the integrated camera to capture frames. In real-time
testing, the main difference between the two configurations
was the effect of wireless transmission latency.
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Fig. 4. Real-time FPS and latency acquisition for DOPS evaluation, comparing MobileNetV2 and ResNet50 across drone and laptop setups.

The drone camera wirelessly transmits the frames, as we
previously discussed, but this leads to network-induced de-
lays that result in irregular frame drops and slow processing
time. Even though the aerial perspective covers a larger
range of view, latency has a detrimental impact on real-
time classification. In contrast, directly collected frames on
the laptop eliminate transmission latency, enabling faster
inference and greater FPS. However, because of its relatively
limited field of view, the fixed camera proves less effective
in monitoring large crop fields.

During the testing phase, both models MobileNetV2 and
ResNet50 are tested in real-time in both setups, compared,
and evaluated using the DOPS metric, the results of which
are shown and compared in section 4 B, from the real-time
acquisition. The live performance of both models is shown
in Figure 4 with the labels of live measurement results of
FPS, latency, and accuracy.

B. DOPS Evaluation

Following the real-time deployment phase, we evaluate
MobileNetV2 and ResNet50 in laptop and drone configura-
tions using the DOPS. DOPS provides a balanced assess-
ment that reflects real-time feasibility, which is crucial for
agricultural AI applications, in contrast to traditional eval-
uations that only consider accuracy. The primary objective
of this evaluation is to assess each model’s performance by
combining accuracy, frames per second (FPS), and latency
as critical variables. Stated differently, an AI model is
considered better when it has a higher DOPS score, meaning
it can process frames quickly and with minimal latency while
maintaining high classification accuracy, on the other hand,
lower DOPS indicates worse real-time performance. A higher
DOPS score indicates that the model is well-suited for real-
time applications, as speed and precision are crucial in drone-
based agricultural monitoring [32].

Despite this, MobileNetV2 is an optimal model for real-
time inference, maintaining a strong balance between accu-
racy and processing speed.

In contrast, the resource-intensive ResNet50 model, known
for its superior accuracy, performs well in terms of classifi-

Setup Laptop Drone
Accuracy 0.93 0.93
Latency 62.26 65.56
FPS 15.44 15.05
DOPS 0.23 0.21

TABLE II
MOBILENETV2 (LAPTOP VS DRONE) DOPS EVALUATION

Setup Laptop Drone
Accuracy 0.99 0.99
Latency 173.52 312.19
FPS 5.61 3.30
DOPS 0.032 0.010

TABLE III
RESNET50 (LAPTOP VS DRONE) DOPS EVALUATION

cation accuracy, with 99% accuracy in both sets. However,
as seen in Figure 5, its computational intensity significantly
impacts its real-time usability. Table 3 shows that compared
to MobileNetV2, the FPS in the laptop setup is only 5.61,
and in the drone setup, it is much lower at 3.30. Additionally,
ResNet50 has a significantly greater latency, reaching 312.19
ms in drone setup and 173.52 ms in laptop setup. After
the evaluation, the DOPS results of ResNet50 are far lower
than those of MobileNetV2. Scoring 0.0320 on the laptop
and only 0.0105 for the drone setup. This demonstrates
that, despite its great accuracy, ResNet50 is not appropriate
for real-time drone-based agricultural applications due to its
slow inference speed and high latency.

The main factor causing ResNet50 to perform worse than
MobileNetv2 in all performance metrics is its large input size
(512x512), while MobileNetV2 has an input size of 224x224.
This resolution has a significant effect on processing time
and computational power, leading to higher latency and a
lower frame rate since each image requires more memory and
computation with each forward pass. As a result, ResNet50
is ineffective for real-time applications and takes longer to
analyze each frame. This leads to lower FPS and greater
latency, whereas MobileNetV2’s smaller input size enables
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Fig. 5. DOPS Evaluation comparison of MobileNetV2 & ResNet50 (Laptop
vs Drone)

faster processing with less memory usage, allowing for
smoother and more stable real-time inference. To add to this,
ResNet50 is a model with more parameters and convolutional
layers than MobileNetV2, which uses fewer computational
resources. Wireless transmission affects both models, with
ResNet50’s larger input size causing heavier data packets
and increased network latency. MobileNetV2’s smaller in-
put size leads to faster data transfer and less lag, making
it more effective in drone-based agricultural monitoring.
ResNet50 performs worse in real-time deployment due to its
deeper network architecture, larger input shape, and higher
computational demands. However, MobileNetV2’s ability to
balance speed and accuracy makes it more suitable for real-
time AI applications, especially in UAV-based agricultural
monitoring.

C. Optimizing ResNet50 for Real-Time Use

In this section, we’ll maximize ResNet50’s effectiveness
without sacrificing its high classification accuracy. Our main
optimizations include freezing the first 50 layers of ResNet50
and lowering the size of the input image. We also use
TensorFlow’s automatic mixed precision feature to apply
mixed precision training, using FP16 computation whenever
feasible. A balance between computational efficiency and re-
tention is achieved by reducing the input size from 512x512
to 256x256, which increases inference speed without signif-
icantly affecting classification performance.

Using mixed-precision training optimization not only re-
duces GPU memory usage but also accelerates training and
inference speed, making the model more appropriate for
real-time deployment. Freezing the layers allows the model
to retain its ability to extract robust features, which results
in faster model convergence and decreased processing time
per frame. Following training with these adjustments, the
model’s training performance is displayed in Figure 6. It

Fig. 6. Optimized ResNet50 Accuracy over Epochs

is evident that the optimized ResNet50 maintains a high
training and validation accuracy of 98% throughout the
training phase. This time, 30% of the data is split for
validation during training, and we observe that only four
images are incorrectly classified in Figure 7 in the confusion
matrix. But evaluating the model in real-time testing during
the deployment phase is the primary objective through the
DOPS Evaluation.

Fig. 7. Confusion Matrix of Optimized ResNet50

Setup Laptop Drone
Accuracy 0.98 0.98
FPS 20.93 21.69
Latency (ms) 42.89 46.74
DOPS 0.48 0.45

TABLE IV
DOPS EVALUATION FOR OPTIMIZED RESNET50

The optimized ResNet50 model outperforms Mo-
bileNetV2 in real-time inference speed and latency, despite
maintaining a high classification accuracy of 98%. The laptop
setup achieves an FPS of 20.93, while the drone setup
slightly outperforms it at 21.69 FPS. The optimizations in-
crease processing speed without impacting performance. La-
tency, a key variable of the DOPS evaluation, is substantially
reduced compared to the model before the optimization. The
laptop setup achieves a latency of 42.89 milliseconds, while
the drone setup exhibits a slightly higher latency of 46.74
milliseconds, primarily due to wireless transmission delay.
These latency improvements are significant compared to the
standard ResNet50 implementation, making the optimized
model more viable for real-time classification in drone-based
agricultural monitoring. The overall DOPS score confirms
the success of these optimizations, with the laptop setup
achieving a DOPS score of 0.478, while the drone setup
slightly lags at 0.454 due to network-related delays. These
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results highlight that the optimized ResNet50 successfully
balances accuracy and real-time performance, making it
a viable solution for UAV-based agricultural classification
tasks.

V. CONCLUSIONS

In this work, we introduce a new metric for evaluation the
Drone Optimized Performance Score (DOPS), a benchmark
for real-time deep learning inference on UAVs. DOPS is
a metric that takes into account accuracy, frame rate, and
latency, providing a simple yet powerful evaluation for the
real-time application of AI models. As a finding initially,
MobileNetV2, being a lightweight model, outperforms the
heavy resource model ResNet50 in real-time inference speed
and, therefore, overall in DOPS. But, after some optimiza-
tions such as input size reduction, mixed-precision training,
and layer freezing made on the ResNet50, it was able to
surpass MobileNetV2, raising the DOPS score from 0.010
to 0.45 and improving the real-time performance while still
maintaining a high classification accuracy. In agricultural
monitoring, where timely and precise identification of issues
like crop stress or insect outbreaks is crucial to preventing
yield loss and guaranteeing resource efficiency, this study
shows that DOPS is a useful metric for assessing real-time
applications. Also, it provides a framework for improving
deep learning models’ performance on edge devices such
as UAVs while still maintaining high accuracy. Future work
includes further optimizing deep learning models for UAV-
based inference by integrating advanced model compression
techniques such as pruning and quantization. These methods
will reduce computational overhead while maintaining high
classification accuracy. Additionally, deploying the models
directly on the edge devices is work that will be implemented
to eliminate transmission delays, improving real-time respon-
siveness. Also, to extend the applicability of DOPS, power
consumption will be incorporated as a metric, enabling more
energy-efficient AI deployments on battery-powered drones.
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Sim2Real Transfer for Vision-Based Grasp Verification

Pau Amargant1,2, Peter Hönig1, and Markus Vincze1

Abstract— The verification of successful grasps is a crucial
aspect of robot manipulation, particularly when handling de-
formable objects. Traditional methods relying on force and
tactile sensors often struggle with deformable and non-rigid
objects. In this work, we present a vision-based approach for
grasp verification to determine whether the robotic gripper
has successfully grasped an object. Our method employs
a two-stage architecture; first YOLO-based object detection
model to detect and locate the robot’s gripper and then a
ResNet-based classifier determines the presence of an object.
To address the limitations of real-world data capture, we
introduce HSR-GraspSynth, a synthetic dataset designed to
simulate diverse grasping scenarios. Furthermore, we explore
the use of Visual Question Answering capabilities as a zero-
shot baseline to which we compare our model. Experimental
results demonstrate that our approach achieves high accuracy
in real-world environments, with potential for integration into
grasping pipelines. Code and datasets are publicly available at
github.com/pauamargant/HSR-GraspSynth

Index Terms— Grasp verification, Robot manipulation, De-
formable objects, Vision-based grasping, YOLO object detec-
tion, ResNet classification, Synthetic dataset, Visual Question
Answering.

I. INTRODUCTION

Deformable object manipulation is a growing field of
research in robotics due to its relevance in a wide range
of tasks [26]. Deformable objects are a common occurrence
in both industrial and household environments, and their ma-
nipulation poses challenges when compared to rigid objects.
Their deformation and varying response to traditional force
and tactile sensing methods during the grasping process in-
troduce significant uncertainty, making it a more challenging
task [25].

One critical aspect of deformable object manipulation is
the verification of successful grasping. Traditional meth-
ods [1], which often rely on the object’s geometry and force
and tactile sensors, struggle to account for the deformation
of the object and its lack of internal structure and resis-
tance [18]. This requires the use of more advanced sensors
and control algorithms, which are often robot and situation
specific.

In this context, computer vision has emerged as a promis-
ing tool to address these challenges. Various methods have
been proposed to use 2D and 3D vision during the grasping
process for tasks such as rope and cloth manipulation [12],
[19]. These approaches use vision in combination with other
input modalities such as tactile sensing to estimate the

1 All authors are with Faculty of Electrical Engineering, Tech-
nical University of Vienna, 1040 Vienna, Austria; {hoenig,
vincze}@acin.ac.tuwien.at

2 Pau Amargant is with Polytechnic University of Catalonia;
pau.amargant@estudiantat.upc.edu

object’s deformation during the grasping procedure. How-
ever, most proposed methods focus on the grasping control
feedback and are object and task specific. These constraints
and their complexity make these models unsuitable for the
task of verifying a successful grasp.

This paper explores the application of computer vision for
verifying whether a robot gripper has successfully grasped
an object, with a focus on methods applicable to deformable
objects. Our approach, which can be easily adapted to
different robots and tasks, leverages object detection and
machine learning to detect the grasping using the robot’s
on device camera. Our main contributions are as follows:

1) We introduce a two-stage vision-based grasp verifica-
tion model combining YOLO-based object detection
and ResNet-based classification, improving generaliza-
tion across different robotic platforms and object types.

2) We present HSR-GraspSynth, a synthetic dataset de-
signed to simulate diverse grasping scenarios, address-
ing the limitations of real-world data collection and
annotation.

3) We investigate the integration of Multimodal Large
Language Models (LLMs) with Visual Question An-
swering (VQA) capabilities as a viable alternative for
zero-shot learning in grasp verification.

II. RELATED WORK

Deformable object manipulation is an active area of re-
search in robotics with wide practical applications [26]. Non-
rigid objects are common in both industrial and domestic
settings, making robots that can handle them especially use-
ful. However, manipulating them poses additional challenges
compared to rigid objects.

One of the most important aspects of the grasping pipeline
is the ability to verify its success. Traditional methods use
object geometry, force, tactile sensors [17], and proximity
sensors [8], but often struggle to account for possible de-
formations and the lack of internal structure in deformable
objects.

In this context, computer vision has been successfully
applied to these challenges. 2D and 3D vision methods
have been proposed for tasks like rope [12] and clothing
manipulation [19]. These methods combine vision with other
modalities to determine grasping poses and account for the
object’s deformation during the procedure.

However, the majority of these methods are focused on
grasping estimation and the control feedback and are robot,
object and task specific. Computer vision solutions have
been proposed as a simpler alternative for the task of
verification [13]. In 2020, the use of low-cost machine vision
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cameras installed in the robot gripper was studied [13]. They
trained both YOLO [16] and MobileNet [6] models for this
task, achieving high precision with different camera systems.

Inspired by this approach, we aim to develop a similar
solution for robots with head-mounted cameras, such as the
PAL Robotics Tiago, Toyota HSR, and Boston Dynamics’
Atlas, enabling vision-based grasp verification without rely-
ing on gripper-mounted cameras.

A. Synthetic Datasets

Synthetic datasets have become increasingly popular for
object grasping research [14]. With the advent of deep neural
networks, the large amounts of data required make the use of
synthetic data an attractive alternative to the laborious task
of acquiring and annotating real world data.

Synthetic datasets have been widely used for training
computer vision models for object detection and robotic
tasks. Tools such as GraspIt [11] and BlenderProc [4] can
be used to generate large-scale, photorealistic, and physics-
aware datasets. By using commonly used object datasets such
as YCB-V [24] and ShapeNetV2 [2], synthetic data makes
it possible to efficiently train models in zero-shot situations
or when real data is costly to obtain. Common use cases are
object detection and pose estimation [9], [22].

However, while there is a wide availability of synthetic
datasets for grasp planning, there is a lack of datasets
specifically designated for grasp verification. Current datasets
do not capture the nuances of successful and failed grasps,
such as occlusions, edge cases, and variations in sensor
perspectives. This highlights a significant gap in the field and
the need for dedicated synthetic datasets to support research
in grasp verification.

III. HSR-GRASPSYNTH DATASET

Training a robust and generalizable model for grasp veri-
fication requires a diverse and extensive dataset. However,
collecting real-world data is often expensive and time-
consuming, making synthetic data an attractive alternative.
Synthetic data should be diverse and similar enough to the
real-world distribution in order to minimize the Sim2Real
gap. [21], [23].

With these goals in mind, we created the HSR-GraspSynth
dataset for grasp verification. It consists of annotated RGB
images, referred to as examples, showing the HSR robot’s
gripper from the perspective of its head-mounted camera.
Each example is annotated with a bounding box around the
visible parts of the gripper and a binary label indicating
whether an object is present in it (object or no_object).

Synthetic examples are generated from 3D simulated
scenes, where a full environment including the robot and
background distractors is randomly configured. Several ex-
amples are generated from the same scene, forming a batch.

The dataset consists of 12.000 examples and a separate
validation dataset composed of 5.000 images.

Fig. 1: Examples from the proposed dataset. The top row
shows examples with an object within the gripper while
the lower row corresponds to no object. Each example
corresponds to a different batch.

A. Data Generation

Synthetic data is generated using BlenderProc, a procedu-
ral pipeline that integrates Blender within Python to facilitate
the rendering of large datasets.

For each batch of the dataset, a new scene is generated. A
model of the robot is positioned at the centre of an enclosed
room, with its arm extended in front of its head. To simulate
realistic environments and obtain robust models, between 2
and 15 distractor objects are randomly scattered within the
field of view of the robot using a physics-based algorithm to
ensure physically plausible poses and varied object scales.

For training examples, distractors are sampled from the
ShapeNetV2 dataset, while for the validation set, objects
from the YCB-V dataset are used.

Ten examples are generated per batch to improve com-
putational efficiency and mitigate some of BlenderProc’s
limitations.

For each example within a batch, the robot’s arm’s pose
is randomized by perturbing the positions of the arm joints
and the camera orientation. A randomly sampled object
is then placed within the robot’s gripper with probability
0.5 to generate both object and no_object examples. The
grasped object is sampled from the same dataset used for
the distractor objects.

When an object is placed between the gripper fingers, the
object is first moved away from the robot to avoid collisions,
and the gripper fingers are partially closed to make contact
with the object. A convex hull approximation is used to
detect when the object collides with the gripper fingers. The
gripper fingers are slowly closed until a collision is detected.

Fig. 1 shows six examples of rendered images of both
classes. The gripper can be observed in several positions,
with different distractor objects in the background.

IV. GRASPCHECKNET

The proposed approach for grasp verification is composed
of a two-stage architecture that combines object detection
and image classification. Object detection is used to localize
the robot’s gripper within the image. This makes the archi-
tecture adaptable to different robotic platforms and object
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Fig. 2: Illustration of the two-stage model architecture using
object detection and image classification. The YOLO object
detection model localizes the robot’s gripper in the image,
and the ResNet classification model uses the cropped image
to determine whether there is an object in the gripper.

types, while the image classification model verifies whether
the grasp was successful.

A. Model Architecture

GraspCheckNet consists of two primary components; a
YOLO-based object detection model and a ResNet-based
image classification model. The object detection stage local-
izes the robot’s gripper in the camera’s field of view, while
the classification model determines whether the gripper is
holding an object.

The object detection model is a pretrained YOLO model
fine-tuned on the HSR-GraspSynth dataset. The image clas-
sification model is based on a ResNet [5] architecture, and
operates on the detected region of interest containing the
gripper produced by the detector.

The presence of an object is formulated as a binary
classification task, where a label of 0 indicates the presence
of an object and a label of 1 signifies its absence.

This labeling scheme aligns with our objective of detecting
unsuccessful grasp attempts.

An overview of the model’s architecture is shown in Fig.
2.

The object detection step facilitates the classification task
by eliminating irrelevant and unnecessary information from
the image, focusing on the region of interest containing
the gripper. Alternatively, this stage could be replaced by
a geometric-based approach if the robot’s characteristics and
kinematics are well-defined and accessible or by incorpo-
rating a predefined pose following the grasping procedure,
where the robot positions the gripper directly in front of
the camera. However, these alternative approaches require a
higher degree of integration and interaction with the grasping
pipeline, as they interrupt the grasping process and require
additional time.

V. EXPERIMENTS
To evaluate the performance of the proposed grasp veri-

fication model and the accompanying dataset, we conduct
experiments on both synthetic and real-world data. The
primary objectives are to assess the model’s effectiveness
in accurately detecting the gripper and determining its state,
as well as to evaluate the domain gap between the synthetic
and real domain. Additionally, we compare it with an LLM-
based Visual Question Answering approach as a few-shot
alternative.

A. Data Acquisition

To assess the model’s performance in real-world con-
ditions, a smaller evaluation dataset of real-world images
is created using the robot’s onboard RGB camera. Data
collection is conducted in a room with furniture and domestic
objects using Toyota’s Human Support Robot (HSR).

The robot is placed in various environments with its arm
extended, and its head-mounted camera oriented towards
the gripper. Images are captured under different conditions,
including scenarios where the gripper is empty and fully
closed and others where it contains objects. A total of 518
real images, which we refer to as examples, are collected
distributed as follows:
• 158 examples where the gripper is empty.
• 150 examples where the gripper holds 16 different rigid

objects. A comprehensive set of YCB-V objects and
other household items found within the label are used.

• 210 examples where the gripper holds 23 different
deformable objects. Various household items such as
clothes, papers, chip bags and tissues are used.

Each object is captured between 5 and 10 times. The robot
is placed in various locations. The head is gradually rotated
between consecutive captures of the same object to change
the field of view and background.

B. Object Detection Model

We employ a fine-tuned YOLO11-l object detection
model. The model is fine-tuned using Ultralytics’ pretrained
YOLO11-l [7] on the proposed synthetic HSR-GraspSynth
dataset. To enhance the training process and mitigate the
Sim-to-Real gap, various data augmentation techniques are
applied during training. Used data augmentation techniques
include perspective and affine transforms, and colour jitter,
brightness and contrast changes and image compression.

The YOLO11-l model is fine-tuned for 100 epochs using
Ultralytics’ model trainer with default parameters. The best
model in terms of mean Average Precision (mAP) on the
validation set is kept after the training process.

Due to the Sim-to-Real gap, a low confidence threshold is
required during inference on real images, leading to a large
number of candidate detections distributed across different
clusters in the image. To mitigate this issue, the confidence
threshold is gradually reduced until detections appear.

When a low threshold value is used, a large number of
detections localized around different clusters in the image
can appear, leading to false positive detections. To mitigate
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Fig. 3: Illustration of the clustering procedure applied to
the detected bounding boxes. DBSCAN is used to identify
clusters and assign a cluster label to each bounding box (left).
Subsequently, the highest confidence bounding box from the
cluster with the highest total confidence score is selected as
the final detection (right).

this, we implement a post-processing refinement step after
detection. Density-Based Spatial Clustering (DBSCAN) is
used to identify clusters of detections within the image, as
shown in Fig. 3. DBSCAN is preferred to other clustering
methods such as K-means because it does not require a pre-
defined number of clusters. The clusters are ranked according
to the cumulative confidence scores of the bounding boxes
they contain. The final detection is selected as the highest
confidence bounding box within the highest ranked cluster.

C. Image Classification

The image classification model is responsible for deter-
mining whether the gripper contains an object or is empty.
For this task, a pretrained ResNet-18 model is employed.
Within the wider ResNet model family, the ResNet-18 was
chosen for having fewer parameters than the bigger models
of its family, making faster during training and inference.

The model’s head is adapted for the task of binary classifi-
cation. The original head is replaced by two fully connected
layers with ReLU activation functions and dropout layers
in-between [20].

The model is trained using ground truth cropped synthetic
images containing the robot’s gripper. Data augmentation
techniques are used to make the model robust to the synthetic
to real domain transfer. The model is trained using an Nvidia
A40 GPU in different stages. First, only the head is trained
using a large dropout rate of 0.7 to 0.5 to make the model
more robust. Afterwards, the learning and dropout rates are
decreased while also unfreezing the backbone’s last layer.

D. Real-world evaluation

To validate the model’s effectiveness in real-world condi-
tions, a qualitative evaluation is conducted. First, the object
detection model (stage 1) is evaluated independently, fol-
lowed by the evaluation of the classification module (stage
2) using the detections as input.

1) Object Detection Model: We first evaluate the ability
of the detection model to localize the gripper within the
image. Intersection over Union thresholds are not used for the
assessment. Instead, the detections are qualitatively assessed
based on whether the bounding boxes sufficiently localize
and encompass the robot’s gripper. The fine-tuned YOLO

Fig. 4: Sample detections using the object detection model.
The red rectangle shows the detected bounding box. Top
and lower rows show correct and incorrect detections re-
spectively.

model is used to obtain the gripper’s bounding box for each
of the 518 test images. Each detection is manually reviewed
and considered correct if it contains, at least partially, both
gripper fingers and the majority of the bounding box area
corresponds to the gripper and object, with limited inclusion
of background regions. Detections that mostly contain the
background or fail to include both gripper fingers are labeled
as incorrect.

Table I shows the results of this evaluation. We observe
that the model is able to properly locate the gripper within the
image in 98% of no_object examples, 94.67% of examples
where there is a rigid object within the gripper and 96.67%
of examples when there is a deformable object in the gripper.

Nevertheless, as shown in Fig. 4 the evaluation is limited
by not taking into account the IoU. During the experiments it
was observed that predicted bounding boxes tend to properly
contain the gripper in terms of width, but often do not
fully encompass it on the vertical axis. During inference we
mitigate it by padding the detected bounding box.

2) Image Classification Model: The second stage of the
model is evaluated using the cropped images obtained from
the object detection outputs. Detected bounding boxes are
used to crop the image region containing the gripper, with
additional margins added to compensate for possible errors.

In order to account for the gap between synthetic and real
data, the probability threshold for assigning to label 1 is

TABLE I: Evaluation of the object detection model on the
real-world dataset. Num. detected refers to the number of
examples where the predicted bounding box is qualitatively
correct. Percentage of objects correct refers to individual
objects that have been detected correctly in all the examples
they apear in the dataset.

Category Num. Images
Num.

Detected % Detected
% Objects

Correct
No Object 158 155 98.10 N/A

Rigid 150 142 94.67 62.50
Deformable 210 203 96.67 82.61
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lowered to 0.15 from 0.5 during evaluation.
Table II shows the evaluation metrics of the model across

the no_object and object categories, and differentiating by
rigid and deformable object. While table III contains the
precision and recall values for the task of detecting no_object
instances.

The model has an accuracy of 74.7% in examples where
the gripper is empty and on 82.9% of deformable object
instances, indicating that it is able to properly recognize non-
rigid objects within the gripper.

In terms of detecting that the gripper is empty, as a class
of binary classification, it achieves a precision value of only
0.678 albeit with a higher recall value. This lower precision
value is indicative of the presence of false positives during
the detection. In our case, in which we are mostly interested
in detecting failed grasps, the focus is on obtaining a higher
recall value.

In terms of execution time, the average inference time is
of 28ms on an A40 GPU, when not taking into account the
initial mode loading time. Extrapolating this result to less
powerful devices indicates the suitability of the model for
low-latency applications.

TABLE II: Classification accuracy per category. Bold indi-
cates maximum, underline indicates minimum performance.

Category
GraspCheckNet
Accuracy (%)

GPT4-o
Accuracy (%)

Llama 3.2 11B
Accuracy (%)

No Object 74.7 95.0 48.7
Rigid 86.7 95.3 68.7

Deformable 82.9 78.1 60.0

TABLE III: Precision and Recall score per model. Bold indi-
cates maximum, underline indicates minimum performance.

Model Precision Recall
GraspCheckNet 0.678 0.749

GPT-4o 0.739 0.95
Llama 3.2 0.357 0.513

E. Visual Question Answering

In order to establish a baseline to which compare our
GraspCheckNet model, we evaluate the use of state-of-the-art
LLMs for Visual Question Answering as a zero-shot method
for image classification. Our goal is to leverage their state-
of-the-art performance in visual reasoning tasks to evaluate
our model’s performance.

We follow a visual-question-answering approach in which
an LLM is prompted with the task that it should do and
how to reply to it. The same prompt is used for all instances
and no concrete information about the object in the gripper
was included even though it might be available in certain
grasping pipelines. We evaluate two LLMs to compare the
effects of the model size and whether on-device models
are able to successfully complete the task. We test GPT4-
o [15] and llama 3.2 Vision 11B [10]. GPT4-o is tested
using OpenIA’s API while Llama 3.2 Vision is used through

UnSloth’s implementation of the model [3], which reduces its
memory footprint. We use both the state of the art GPT4-o,
which is closed-source and has large memory requirements,
and Llama 3.2 in its 11B parameters version. This latter
model can be run in consumer devices with approximately
6GB of GPU or unified system memory, making it feasible
to deploy in practical scenarios.

Table II shows the results of evaluating the VQA models
on the real-world evaluation dataset. Llama was not able
to successfully perform the VQA task, achieving a recall
of only 0.513. When asked concrete questions about the
images, the model often produces hallucinations or does not
correctly understand the scene. This indicates that further
advancements in vision LLMs or the use of larger models is
required.

On the other hand, GPT4-o is able to correctly detect most
instances of the gripper being empty, with a recall of 0.95.
However, it shows a relatively large amount of false positives
in deformable objects, recognizing the gripper as empty. This
does not happen uniformly across all objects. It is not able to
properly detect some clothing items such as a black glove,
a kitchen drape, a t-shirt and a hat, which account for 33
out of the 46 wrong classifications of deformable objects.
These objects present uniform textures, without defining
features, and when grasped by the gripper they do not hold a
recognizable shape. This might indicate that the vision model
focus on the detection of an object and not in identifying
whether there is anything in the gripper, making it susceptible
to false positives when there are difficult to recognize objects.
It presents a higher amount of false positives, deformable
object instances classified as empty, than our model while
it has a lower amount of false negatives, instances of empty
gripper classified as not empty.

The use of vision language models, even when using
smaller models such as Llama 3.2 11B, requires expensive
compute and requires more execution time than our proposed
model. Open AI’s GPT4-o required on average 2.27 seconds
per image, albeit with a high standard deviation of 1.53
seconds. Due to the use of a remotely hosted API, the
model’s latency can often not be stable and a stable internet
connection is required. The higher latency and requirement
for internet connection makes this method less reliable for
real-world applications. In terms of cost, each instance
costs approximately 0.001C to execute. While this cost is
relatively low, it can quickly scale up if a large amount of
classifications is required.

When compared to our model, GraspCheckNet offers
lower recall but can be run on-device with a lower inference
time, making it feasible for low-latency applications and
integration within grasping pipelines. Our model achieves
comparable performance in detecting the presence of de-
formable objects but is less accurate to detect the gripper
being empty.

VI. CONCLUSION AND FUTURE WORK

This paper presents GraspCheckNet, a vision-based ap-
proach for grasp verification using head-mounted cameras,
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with a particular emphasis on deformable object manipula-
tion. Our two-stage architecture uses object detection and
image classification to verify successful grasps, addressing
the challenges posed by non-rigid and deformable objects.
We introduce HSR-GraspSynth, a synthetic dataset for train-
ing grasp verification models and help address the limitations
of real-world data acquisition and reduce the Sim2Real gap.
Experimental results demonstrate that the proposed approach
properly detects the presence of an object within the robot’s
gripper, particularly for deformable objects. Our approach
maintains consistence performance while offering significant
advantages in terms of inference and the ability to run on-
device without requiring external APIs.

Future work should focus on the integration within grasp-
ing pipelines, exploring how real-time verification can be
of use and how a better integration with the pipeline can be
used to increase the model’s accuracy. Furthermore, domain-
adaptation techniques, both supervised and unsupervised
could be explored to mitigate the Sim2Real gap.
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LLM-Empowered Embodied Agent for Memory-Augmented Task Planning
in Household Robotics

Marc Glocker1,2, Peter Hönig1, Matthias Hirschmanner1, and Markus Vincze1

Abstract— We present an embodied robotic system with an
LLM-driven agent-orchestration architecture for autonomous
household object management. The system integrates memory-
augmented task planning, enabling robots to execute high-level
user commands while tracking past actions. It employs three
specialized agents: a routing agent, a task planning agent, and a
knowledge base agent, each powered by task-specific LLMs. By
leveraging in-context learning, our system avoids the need for
explicit model training. RAG enables the system to retrieve
context from past interactions, enhancing long-term object
tracking. A combination of Grounded SAM and LLaMa3.2-
Vision provides robust object detection, facilitating semantic
scene understanding for task planning. Evaluation across three
household scenarios demonstrates high task planning accuracy
and an improvement in memory recall due to RAG. Specifically,
Qwen2.5 yields best performance for specialized agents, while
LLaMA3.1 excels in routing tasks. The source code is available
at: https://github.com/marc1198/chat-hsr

Index Terms— Embodied AI, Task Planning, Memory Re-
trieval

I. INTRODUCTION

Despite recent progress in robotics and artificial intelli-
gence, robots still struggle to adapt flexibly to the diverse,
dynamic situations of real-world environments, particularly
in household settings [24]. While symbolic task planning
with languages like the Planning Domain Definition Lan-
guage (PDDL) [11] is effective in domains with fixed rules
and predictable object categories, it lacks the adaptabil-
ity required for open-ended household environments. In
such settings, robots must deal with ambiguous user com-
mands, detect novel or unstructured objects, and respond
to constantly changing spatial configurations [24]. These
limitations motivate our hypothesis that a modular LLM-
driven system can enhance flexibility by leveraging natural
language understanding, contextual reasoning, and memory-
based adaptation. We provide a proof-of-concept implemen-
tation and assess its performance in real-world household
tasks.

In this work, we present an embodied robotic system with
an LLM-driven agent-orchestration architecture, where spe-
cialized software agents collaborate to address long-horizon
household tasks. Recent advances in Large Language Models
(LLMs) [13], [4], [15], [23], [5] have improved systems real-
world understanding, enabling common-sense reasoning in

1 Automation and Control Institute, Faculty of Electrical Engineer-
ing, TU Wien, 1040 Vienna, Austria {hoenig, hirschmanner,
vincze}@acin.ac.tuwien.at

2 AIT Austrian Institute of Technology GmbH, Center
for Vision, Automation and Control, 1210 Vienna, Austria
marc.glocker@ait.ac.at

Fig. 1: Our LLM-driven robotic system autonomously plans
tasks and retrieves past interactions to improve object
handling, illustrated by LLM-enforced task planning and
memory-retrieved reasoning in a household setting.

human language and making them accessible to researchers.
These advances combined with in-context learning [26]
enable flexible embodied task planning by decomposing
high-level commands, such as ”clear the dining table”,
into actionable steps based on detected objects [2], [7],
[25], [9], [21]. By integrating Grounded Segment Anything
Model (Grounded SAM) [17] and LLaMa3.2-Vision [4], our
system creates grounded task plans. Unlike most other works,
we address long-term operations by maintaining action and
environment records, utilizing Retrieval-Augmented Gener-
ation (RAG) for efficient memory retrieval. Our approach
enables the robot to autonomously organize and retrieve
objects, interpret complex tasks, and provide updates on
object locations, all while ensuring privacy through the use
of offline LLMs and avoiding explicit model training. To
illustrate the systems interaction, Fig. 1 shows an example
of our system in action.

In summary, we present the following key contributions:

• A long-horizon task planner for household tasks lever-
aging in-context learning and offline LLMs.

• Use of RAG for efficient memory retrieval and object
tracking.

• A modular agent-orchestration system that improves
robustness and modularity.

• Evaluation of the system’s performance in three real-
world household scenarios.

This paper is structured as follows: Section II reviews
related work in the areas of task planning and memory mech-
anisms. Section III details the proposed system architecture.
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Section IV describes the experimental setup and household
scenarios. Section V presents the results. Finally, Section VI
concludes the paper and outlines directions for future work.

II. RELATED WORK

In this section we discuss related work for action and task
planning, as well as memory and knowledge base.

A. Action and Task Planning

Recent advancements in prompt engineering have im-
proved the problem-solving capabilities of LLMs [26], [28],
enabling the generation of structured plans without fine-
tuning. Consequently, modern agent architectures leverage
LLMs to dynamically react to execution failures [27], [7]
and expand their context by retrieval [8] or external tools
[19], [18]. However, LLMs lack an inherent understanding
of a robot’s physical abilities and real-world constraints.
SayCan [2] addresses this by integrating value functions of
pre-trained robotic skills to ensure feasibility, whereas Huang
et al. [6] leverage LLMs to match high-level plans with low-
level actions through semantic mapping. Some works treat
LLMs as programmers rather than direct decision-makers:
Code-as-Policies [9] and ProgPrompt [21] allow LLMs to
generate structured code for robotic executions, enhancing
flexibility but adding an execution layer.

Pallagani et al. [14] found that LLMs perform better as
translators of natural language into structured plans rather
than generating plans from scratch. This ensures feasible
actions based on predefined world models [20], [10]. These
approaches are particularly effective in highly controlled
environments, but present challenges when applied to open-
ended, dynamic household settings. Our work, instead,
embraces flexible, dynamic task planning with in-context
learning like shown in [25]. The approaches named, while
effective for short-horizon tasks, do not track object positions
over time. For long-horizon tasks that involve real-world
dynamic conditions, a combination of task planning and a
memory mechanism is required.

B. Memory and Knowledge Base

Long-horizon tasks require robust memory mechanisms.
While LLM context windows keep expanding [23], using
excessively large contexts in robotics is computationally
inefficient. Instead, long-term memory retrieval, accessed
only when needed, is a more viable solution. RAG [8]
provides an efficient mechanism for narrowing context by
querying a vast dataset and retrieving only relevant infor-
mation. Additionally, scene graphs, used in approaches like
SayPlan [16] and DELTA [10], offer structured memory that
improves action verification and contextual reasoning. How-
ever, in unstructured and constantly changing environments,
maintaining these graphs becomes challenging due to the
need for complex automatic mechanisms or manual curation.

Our work explores the feasibility of a lightweight, fully
natural language-driven approach using RAG as a memory
mechanism. Inspired by ReMEmbR [1], our system incorpo-
rates temporal elements into the retrieval process, ensuring

the robot tracks long-term changes in its environment. While
using language-based memory retrieval introduces potential
for increased errors compared to structured models like scene
graphs, we aim to evaluate how well purely language-based
memory retrieval performs in practical, dynamic household
scenarios. This approach offers flexibility, adaptability, and
reduces the need for explicit world modelling, making it
more suitable for real-world applications.

III. METHODOLOGY

Fig. 2: The full pipeline, integrating long-horizon task plan-
ning. Newly introduced components are highlighted in blue.

Our system, coordinated by an agent-orchestration frame-
work, combines task planning with RAG [8]. This chapter
explains the individual components and their interaction.

Fig. 2 illustrates the overall pipeline. The focus of this
work is the agent-orchestration system, which processes
object detection and user requests to create a robot task plan.
In the system, each agent uses an LLM with a specialized
role. The task planning agent additionally is prompted with
a chain-of-thought technique [26].

Fig. 3: The agent-orchestration architecture

The system architecture of the agent orchestrator, illus-
trated in Fig. 3, consists of:

1) A routing agent, responsible for analyzing incoming
user requests.
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2) A task planning agent, handling commands that
require the robot to perform actions.

3) A knowledge base agent, processing follow-up ques-
tions about previously handled objects.

When a user request arrives, the routing agent first
analyzes it to determine its nature. The request is then
categorized into one of three types:

1) Action command: If the robot is asked to perform an
action, it is forwarded to the task planning agent.

2) Query about history: If it concerns previously han-
dled objects, it is directed to the knowledge base agent.

3) Unclear request: If the request doesn’t fit either
category, clarification is requested before proceeding.

A. Task Planning Agent

The task planning agent receives frequent environmental
updates via camera perception, encoded as a list of single
objects. Grounded SAM [17] enables text-driven object de-
tection and segmentation for the pipeline, while Vision Lan-
guage Models (VLMs) generate natural language descrip-
tions of the environment. Although VLMs alone can extract
the object list for the LLM, Grounded SAM is essential for
precise segmentation, which is critical for grasping tasks.
Using the object list, the LLM processes the user request
– which can be both expressed in high-level or low-level
terms – and formulates tasks that best fulfill the command.
The generated answer has to include a JSON string for an
action following this structure:

1) Objects involved in the task.
2) The destination for placement tasks.
After the action is determined, the grasping process is

initiated. We use the segmentation from Grounded SAM and
the camera intrinsics to crop the depth image and project
the depth crop to a 3D pointcloud of the respective object.
To estimate a grasp approach vector, we feed the cropped
object point cloud to Control-GraspNet [22], a pre-trained
grasp estimator.

B. Knowledge Base Agent

Fig. 4: RAG workflow for long-term question answering:
Relevant past actions are retrieved from dialogue history, and
the LLM generates responses based on the retrieved context.

The knowledge base agent is used for user inquiries
regarding past robot actions, such as object locations or

task completion status. These queries require access to long-
term memory, for which RAG has proven most effective, as
discussed in Section II. Fig 4 illustrates the RAG workflow,
comprising two key steps:

1) Document Ingestion: Input data, such as conversation
history, is preprocessed, split into smaller chunks (each
representing a question-answer pair), and converted
into high-dimensional vectors using an embedding
model. These embeddings are then stored in a vector
database for efficient retrieval.

2) User Query, Retrieval, and Response Generation:
User queries are embedded using the same model and
are matched against the stored vectors to retrieve the
most relevant context. This context is then provided to
the LLM, which generates a response tailored to the
user’s query.

To enable chronological reasoning, essential for tracking
object movements over time, we augment RAG with a time
stamp for each question-answer pair.

IV. EXPERIMENTS

To evaluate our system, we conduct experiments address-
ing the three key challenges from Chapter I: (1) flexible
task planning in dynamic household environments, (2) long-
term memory usage, and (3) modular agent coordination.
Specifically, we assess the system’s ability to create grounded
task plans, answer questions based on prior interactions, and
route tasks to the appropriate agent.

A. Experimental Setup

This study evaluates an agent-orchestration system for
symbolic task planning and follow-up questions via a knowl-
edge base. To ensure a thorough evaluation, we consider
three distinct phases:

1) Task Planning Performance – The symbolic task
planning output is assessed independently, measuring
accuracy of object assignment to their destinations.

2) Knowledge Base Reliability – The system’s ability to
reason about past actions (with and without RAG) is
tested by asking about the system’s current status, such
as locations of previously moved items.

3) Routing Reliability – Measures the accuracy of the
routing agent in directing queries to the appropriate
agent (Task Planning, History, or itself).

To isolate the performance of the specialized agents, agent
handoff is not considered in the evaluation of 1) and 2).

B. Algorithmic Framework

The frameworks and models used are shown in gray
in Fig. 4. To enable efficient collaboration among agents,
we use OpenAI Swarm [12], a lightweight framework for
agent orchestration and task delegation. We evaluate the
performance of Qwen2.5-32b [15], Gemma2-27b [23], and
LLaMa3.1-8b [4], selected for their open-source availability
and ability to run locally on 16GB GPU RAM. For RAG,
we employ ChromaDB [3], a vector database optimized for
fast lookups, combined with the embedding model BGE-M3.
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C. Task Scenarios

Fig. 5: The artificial household environment used in the
experiment.

The experiment is conducted in an artificial household
environment, where objects must be assigned to correct
destinations based on high-level commands. To evaluate
task planning, we define three scenarios (see Fig. 6) that
share five predefined placement locations, while each uses a
different cleanup zone. Fig. 5 shows a visual representation
of the environment. These locations reflect common-sense
knowledge typically understood by LLMs. To ensure clarity,
the agent receives explicit definitions for each destination:
• Sink – For items that need washing.
• Trash Can – For disposable or inedible items.
• Fridge – For perishable food.
• Food Shelf – For non-perishable food items.
• Storage Box – For general storage.

Fig. 6 shows the object list extracted from a captured
image of each task scenario using LLaMa3.2-Vision along
with the user queries and the segmentation results from
Grounded SAM.

After execution of all scenarios, the knowledge base agent
is asked four distinct folow-up questions targeting different
aspects of retrieval and reasoning:
• Error Detection: ”Where is the jacket that was in the

living room? I thought you put it in the storage box, but
I can’t find it there.”

• Hallucination: ”Where did you put the laptop? It’s not
on the desk anymore.”

• Food Availability: ”I am hungry. Is there any food left
from earlier?”

• Trash Status: ”How many objects are in the trash can?”
To better reflect real-world applications, we extend the

conversation dialogue with additional question-answer pairs
containing actions. Furthermore, deliberate errors are intro-
duced into the task plans, where the agent provides the
user a different location than the one forwarded to the state
machine. This allows us to evaluate how well the knowledge
base handles inaccuracies. Beyond evaluating the specialized
agents in isolated setups, we assess how effectively the
routing agent delegates tasks to the appropriate specialized
agent. Specifically, we test:
• Task Planning Queries: The three high-level com-

mands from the task planning scenarios (see Fig. 6) and
an additional low-level request (”Can I have a banana?”)

• Knowledge Base Queries: The four follow-up ques-
tions from the knowledge base scenario.

D. Evaluation Methodology

The evaluation of the agent-orchestration system’s compo-
nents is based on the task scenarios and follow-up questions
defined in Section IV-C. Task planning performance is evalu-
ated by testing each model on the three task scenarios, with
each scenario executed five times per model. Accuracy is
measured at the object level as the percentage of correctly
assigned tasks. A task is deemed correct if it satisfies the
following criteria:
• Valid JSON format
• Correct destination assignment
• Stationary Object Exclusion (ensuring no task is

assigned to items that should remain in place)
The final accuracy score represents the percentage of objects
for which tasks were correctly assigned, including the im-
plicit ”no task” assignment for stationary objects (e.g., table).

The knowledge base is evaluated using four follow-up
questions, each tested five times per model. Unlike the
task planning agent, the knowledge base agent does not
require a strict output format. It is assessed based on factual
correctness, measured as the percentage of correct answers.
For queries expecting multiple objects as an answer (e.g.,
”Which objects are in the trash?”), accuracy is based on the
percentage of correctly identified objects.

The routing agent’s ability to correctly assign tasks is eval-
uated by processing queries from the task planning scenarios
and history-based questions, along with one additional query,
five times per model. The final metric is quantified as the
percentage of correctly assigned tasks. Gemma2, which does
not support tool calling, is excluded from this test.

V. RESULTS AND DISCUSSION

This section presents the experimental results for task
planning, knowledge base and agent routing.

A. Task Planning

We introduce a lenient evaluation metric (cf. Table I),
where reasonable alternative placements based on user pref-
erences are counted as correct. The strictly correct place-
ments, following the intended plan as prompted to the LLM,
are presented under the strict metric in Table I.

Table I shows that Qwen consistently outperforms the
other models in nearly all scenarios. LLaMA performs no-
tably worse in the living room scenario, with the lowest strict
accuracy (40.0%). Gemma2 falls between the two, showing
higher accuracy than LLaMA but lower than Qwen.

B. Knowledge Base

The integration of RAG notably enhances the accuracy
of the knowledge base’s responses, even in medium-term
interactions consisting of 21 question-answer pairs with ap-
proximately 4000 tokens. Qwen achieves the highest validity
(91.3%) with RAG (cf. Table II), highlighting the potential of
retrieval-augmented approaches for maintaining consistency
over longer interactions.
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(a) Scenario 1: Dining Table Cleanup
Object list from VLM: Plate, Fork, Spoon,
Salt shaker, Glass, Frying pan, Spatula, Chair,
Table top, Pepper grinder. Command: I just
finished dinner, please clear the dining table.

(b) Scenario 2: Living Room Cleanup
Object list from VLM: A table, A couch,
A brush, Scissors, Pen, Book, Salt packet,
Jacket, Markers. Command: Please hand
me the brush and tidy up the rest of the
living room.

(c) Scenario 3: Desk Organization
Object list from VLM: Desk, Computer Mon-
itor, Laptop, Mouse, Plate, Crumbs, Lemon,
Cup, Glass of water, Bag of chips, Piece of
paper, Potted plant, Cord, Wooden desk, White
wall. Command: Please clear my desk, leav-
ing only the essentials for work.

Fig. 6: The three scenarios used for task planning. For each scenario we have extracted an object list using the Vision-
Language Model LLaMa3.2-Vision. This list is used as input for Grounded SAM [17] to perform segmentation.

Model Dining Table Living Room Desk Organization Total Accuracy (%)
Strict (%) Lenient (%) Strict (%) Lenient (%) Strict (%) Lenient (%) Strict (%) Lenient (%)

LLaMa3.1-8B 68.0 78.0 40.0 40.0 61.3 65.3 56.4 61.1
Gemma2-27B 58.0 68.0 68.9 68.9 68.0 69.3 65.0 68.7
Qwen2.5-32B 64.0 80.0 88.9 88.9 78.7 84.0 77.2 84.3

TABLE I: Task Planning Accuracy Across Different LLMs. Strict (%): Percentage of objects correctly placed according
to the intended plan. Lenient (%): Percentage of objects placed differently than expected, but with reasonable alternative
placements based on user preferences.

Method Model Response Validity (%) Total Validity (%)
Err. Detection Hallucination Food Avail. Trash Status

Without RAG (Ablation Study)
LLaMa3.1-8B 20.0 80.0 70.0 65.0 58.8
Gemma2-27B 0.0 80.0 10.0 60.0 37.5
Qwen2.5-32B 0.0 80.0 60.0 75.0 53.75

With RAG
LLaMa3.1-8B 40.0 100.0 90.0 55.0 71.25
Gemma2-27B 80.0 100.0 40.0 60.0 70.0
Qwen2.5-32B 100.0 100.0 90.0 75.0 91.3

TABLE II: Knowledge Base Response Accuracy Across Different LLMs. Used Embedding Model for RAG: BGE-M3.
No. of question-answer pairs retrieved by RAG: 5

C. Agent Routing

In task delegation, LLaMA exhibits the highest routing
accuracy (92.5%), despite its weaker reasoning abilities (cf.
Table III). Its structured approach to tool-calling ensures
stable performance. In contrast, Qwen, while superior in
contextual understanding, occasionally produces incorrect
structured outputs, leading to execution failures.

D. Summary

Our findings highlight the potential of lightweight, open-
source LLMs for memory-augmented long-horizon task plan-
ning. A combination of LLaMA (routing) and Qwen (special-
ized agents) achieves the best balance between structured

execution and high-level reasoning.
Evaluating task execution remains challenging due to

subjective human preferences, emphasizing the need for user
studies. Furthermore, integrating Vision-Language Models
(VLMs) into the agent orchestrator – rather than only using
them for object lists – could enhance robustness. Embedding
contextual information into the latent space reduces com-
mand dependency and improves autonomy.

RAG improves factual consistency in knowledge retrieval
but struggles with repeated object interactions and long his-
tories, making full-history queries impractical. Scene graphs,
as proposed by Liu et al. [10], present a promising alternative
for efficient and robust knowledge integration.
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Model Task Planning Queries (%) Knowledge Base Queries (%) Total Success Rate (%)
LLaMa3.1-8B 85.0 100.0 92.5
Qwen2.5-32B 95.0 85.0 90.0

TABLE III: Routing Success Rate Across Different LLMs

While task delegation via the routing agent was mostly
successful, certain models occasionally produced invalid
structured outputs, leading to execution failures. To increase
robustness, future work should explore schema validation and
adaptive retry mechanisms that can automatically mitigate
such issues.

In summary, open-source LLMs prove viable for long-
horizon task planning. However, addressing key challenges –
refining evaluation metrics, improving long-term robustness,
and integrating multimodal perception – remains essential
for achieving reliable household robotics.

VI. CONCLUSION

This work presents a prototype of an agent-orchestration
system for household robots, utilizing local, lightweight
open-source LLMs to translate high-level user commands
into structured task plans for tidy-up scenarios. Memory-
augmented task planning enables follow-up queries about
past actions, improving user interaction and assisting in
locating misplaced objects. Our evaluation shows strong task
planning, routing, and knowledge retrieval. with Qwen2.5
excelling in reasoning-heavy tasks and LLaMA3.1 provid-
ing a more efficient routing solution. However, RAG-based
retrieval for general tasks remains a challenge, particularly
for implicit queries where relevant information is not always
found. Addressing these limitations is key to improving long-
term reasoning and knowledge access.

Future work will focus on robust storage solutions, im-
proved knowledge representations, broader user studies with
structured datasets for evaluating and benchmarking existing
approaches. Enhancing communication and tool usage in
agent-orchestration will be crucial for greater adaptability
and autonomy in household robotics.
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Low-Cost Open-Source Real-Time Communication in Industrial IoT:
Using the Raspberry Pi 5 with OPC UA over TSN*

Jonathan Lukas Mandl1, Olaf Saßnick2, and Thomas Rosenstatter3

Abstract— Industry 4.0 demands optimized industrial process
control and enhanced data permeability, necessitating more
capable edge-level hardware. While personal computers with
real-time Linux operating systems offer ample computing power
at low cost, they suffer from limitations in low-level connectivity,
standardized compact form factors, and uncertain long-term
supplies. This paper explores the Raspberry Pi 5 as a viable
alternative, highlighting its excellent low-level connectivity,
compact form factor, and guaranteed long-term availability
until 2036.

This study investigates the Raspberry Pi 5’s performance
in real-time communication scenarios using Open Platform
Communications Unified Architecture (OPC UA) over Time-
Sensitive Networking (TSN), a critical requirement for indus-
trial applications. By outlining necessary modifications to the
Raspberry Pi 5 and its Linux kernel, we enable real-time com-
munication via TSN. Performance measurements in an OPC
UA PubSub scenario are then compared with industrial PCs,
highlighting the Raspberry Pi 5’s potential as an alternative
edge device.

Index Terms— Industry 4.0, industrial communication, time-
sensitive networking, commodity hardware

I. INTRODUCTION

The rising need for optimized industrial process control
and data permeability driven by the Industry 4.0 initiative
necessitates more capable hardware at the edge-level. While
personal computers with real-time Linux operating systems
could provide plenty of computing power at a low cost,
they come with downsides, namely: (i) a lack of low-level
connectivity, (ii) limited options for standardized compact
form factors, and (iii) uncertain long-term supplies.

Connectivity. Basic interfaces are missing to interface
sensors, such as RS485, One-Wire, and also General-Purpose
Input/Output (GPIO). One can resort to USB adapters,
which, however, contribute to latency and introduce new
sources of failure.

Form factor. The smallest widespread standardized form
factor, Mini-ITX, still occupies a considerable amount of
space and is therefore unsuitable for numerous applications.

Long-term supplies. Although personal computers are
readily available, new generations are typically introduced

*The industrial computers used in this work were provided by the Open
Source Automation Development Lab (OSADL) eG.
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every 1-2 years, phasing out the previous models. Addi-
tionally, unannounced hardware revisions can significantly
impact usability in industrial systems. Once a model has been
thoroughly tested, it is undesirable to change and retest it.

Motivation. Considering all three options, the Raspberry
Pi 5 is a viable alternative. It offers excellent low-level
connectivity in a compact form factor and guarantees long-
term supplies, as it will remain in production until 2036.
Additionally, the Compute Module 5 [12], which features a
high-density perpendicular connector, uses the same hard-
ware. This module simplifies the hardware design process
for custom solutions, allowing for a 2-layer printed circuit
board. Since the NIC and processor are identical, all findings
in this work are applicable to the Compute Module 5.

The Raspberry Pi 5 presents a strong candidate, given the
benefits mentioned earlier. Especially in resource-constrained
environments like mobile robotics, where the form factor and
energy efficiency are crucial, this system could prove highly
beneficial. However, it is essential to evaluate its performance
in real-time communication scenarios, as this is a critical
requirement for industrial applications.

Contribution. In this paper we investigate two research
questions (RQs) focusing on the Raspberry Pi 5’s perfor-
mance with OPC UA Time-Sensitive Networking (TSN) and
further compare it to industrial PCs.
• RQ1. How does the Raspberry Pi 5 perform in real-time

communication tasks using OPC UA over TSN?
• RQ2. How does the Raspberry Pi 5’s performance as a

real-time OPC UA node compare to industrial PCs?
By addressing the above-mentioned research questions, we

first outline the necessary modifications to the Raspberry Pi 5
and its Linux kernel. These modifications enable real-time
communication via TSN. After setting up the Raspberry Pi 5
devices, we measure their performance in a OPC UA PubSub
scenario (RQ1). We compare this performance with industrial
PCs, which serve as a baseline. This comparison highlights
the Pi 5’s potential as an alternative edge device (RQ2).

II. BACKGROUND

A. Raspberry Pi 5 Hardware

The Raspberry Pi 5, hereafter referred to as the Pi 5, is
a single-board computer from the Raspberry Pi Foundation.
The term single-board computer describes the hardware, as
it is integrated onto a single circuit board. Compared to its
predecessor, the Pi 4, the Raspberry Pi Foundation reports a
two to threefold increase in performance. Furthermore, the
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cache layout is improved on the Pi 5. L3 cache is added
and the L2 cache is changed from shared to per-core cache.
This helps with the isolation of CPU cores and their caches,
improving timing determinism in real-time systems [15].

For this work, the Ethernet peripherals are more critical
than the chosen processor. The Pi 5 features, in comparison
to its predecessor, utilizes an in-house developed south bridge
that connects the Ethernet MAC peripherals via PCI-E. This
setup includes the Cadence Gigabit Ethernet MAC design
of type GEM GXL 1p09, which supports IEEE 1588 for
precise time synchronization, a standard used in Precision
Time Protocols (PTPs) applications. This design allows for
time-stamping of packets, which is crucial for applications
requiring synchronized timing, such as industrial automation
and real-time communication systems [14].

B. Precision Time Protocol

The PTP protocol enables precise synchronization of the
clocks of multiple devices in the same network. It uses a mas-
ter slave topology to determine the exact travel delay between
two devices which is then used to synchronize the slave clock
to the master clock. Due to the fundamental properties of the
protocol, hardware support from the Ethernet MAC is needed
for precise synchronization. In this case the Ethernet MAC
uses an internal clock inside the Network Interface Card
(NIC) to timestamp incoming and outgoing packets. While
software timestamping happens inside the Linux kernel and
therefore adds operating system latencies. The Linux imple-
mentation uses two services: ptp4l is used for performing
the PTP protocol, phc2sys synchronizes the system clock
to the PTP hardware clock used for timestamping [5].

C. Time-Sensitive Networking

Time-Sensitive Networking is a series of standards that
add to the Ethernet standard to improve the real-time perfor-
mance of Ethernet. It mainly addresses two important fea-
tures needed for real-time applications: time synchronization
and traffic shaping [2].

Time synchronization and more specifically PTP, synchro-
nizes the clocks of the nodes in a TSN network. Clock
synchronization is needed to ensure that time driven com-
munication can be correctly performed. Shaping algorithms
also depend on a common and accurate time.

This work focuses solely on the time synchronization part
of the TSN standard. Shaping is largely dependent on the
implementing software. In the experimental setup there are
only two TSN capable devices and no additional non-real-
time traffic which would make shaping necessary.

D. PREEMPT RT-patched Linux kernel

The experiments in this work were done on the version
6.6.23 and 6.6.78 of the Linux kernel and therefore needed
the PREEMPT RT patches for real-time support. The patches
6.6.23-rt28 and 6.6.78-rt51 were used. Even though dynamic
preemption in the Linux kernel reduces the latency of tasks
a lot, full preemption is needed to minimize latency and
improve consistency of process wake up times. The patch

achieves this mostly by removing or altering non preemptable
kernel code. Another significant change is the adoption of
threaded interrupt handling, which allows higher priority
interrupts to interrupt lower priority interrupt handlers.

Without threaded interrupt handlers the latency of network
interrupts would be less predictable and generally higher.
The real-time performance of the patched Linux kernel was
tested with the cyclictest utility and a synthetic system
load. The cyclictest utility from the rt-tests package uses
clock nanosleep to suspend a measuring thread. By
calculating the deviation from the expected wake-up time,
the utility calculates the systems latencies [19]. Furthermore,
the load generating tool stress was used for synthetic CPU
and memory load. This load ensures that the Linux kernel
has to be preempted during the test [18].

E. Open Platform Communications Unified Architecture

OPC UA represents an evolution of the OPC standard
which consolidates the previous OPC Classic specifications
into a platform-independent framework. OPC UA is a data
exchange standard that supports a variety of functions,
including data transfer, method calls, and other capabili-
ties. The OPC Foundation describes its primary use case
as enabling communication from machine-to-machine and
machine-to-enterprise, as well as bridging the two. A key
feature is its ability to semantically describe data and or-
ganize it within complex, object-oriented structures. While
OPC UA offers a wide range of functionalities, this paper
focuses on its role as a foundation for data transfer.

Furthermore, the OPC UA application used in this work
leverages the PubSub mechanism to transfer data between
nodes. The code is provided by Pfrommer et al. [10] and is
available in the open62541 library until version 1.4

III. RELATED WORK

The Open Source Automation Development Lab eG (OS-
ADL) is a laboratory dedicated to providing open-source
software solutions for industrial systems. They have projects
focused on real-time networking with various protocols,
including OPC UA PubSub over TSN. In contrast to this
paper, their research focuses on the feasibility of open-source
software in industrial applications. Measurements from their
project [7] can be compared with the results presented in this
paper.

The work by Ulbricht et al. [17] describes TSN-FlexTest, a
flexible testbed for TSN measurements. This testbed utilizes
commodity off-the-shelf hardware and focuses on the TSN
communication itself. They also use the same NIC (Intel
I210) as the computers for our baseline comparison.

While other studies have utilized the Raspberry Pi in
industrial settings using OPC UA, they do not focus on OPC
UA over TSN (e.g., [6], [4]). An exception is the work by
Reddy et al. [16], who employ a Raspberry Pi 3 only as a
subscriber in a TSN network, although they do not provide
performance details.

We have not found any comparable research investigating
the potential of the Pi 5 computer respectively the Compute
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Fig. 1. Network topology of the experiment setup.

Module 5 as a replacement for industrial computers in real-
time networking using TSN.

IV. EXPERIMENT SETUP

The setup comprises two Pi 5 computers, a consumer
grade network switch and a network tap. A dedicated net-
work tap is utilized to measure and improve the accuracy
of packet timestamps as well as to include jitter of hardware
latencies of the computers used. The Pi 5 computers are con-
figured as OPC UA PubSub nodes. Both act as a subscriber
and a publisher as presented in the TSN example program1

in the open62541 library (until Version 1.4) [10]. Moreover,
for clock synchronization between the two TSN nodes, one
of the OPC UA PubSub nodes acts as a PTP master for the
other node.

A. Hardware Details

In addition to this setup, two industrial PCs are used for
baseline measurements. These PCs are equipped with Intel
i210 NICs, which support optimization for TSN networks.
The two primary settings for tuning are: defining a launch
time for packets (SO TXTIME) and use of multiple hardware
queues for different priority packets. Additionally, in the
baseline measurements, one industry PC was also used as the
PTP master. This was done in order to remove all Pi 5 out of
the tests and should not change the outcome. This difference
also highlights that the industrial PCs can operate at very
short cycle times with low jitter, as shown in Section V.

It should be noted that the used layer 2 switch does
not support all features of the TSN specification. But this
reinforces the purpose of this paper to use commodity off-
the-shelf hardware for evaluating the performance of real-
time networking. Figure 1 illustrates the testing setup. The
illustrated OPC-UA nodes are the Pi 5 computers respec-
tively the industrial PCs.

Following is a list of the hardware used in the test setup:
• ProfiShark 1G network tap
• TP-Link TL-SG105E 5 port unmanaged switch
• Raspberry Pi 5 with 4GB memory

For baseline testing with industrial PCs instead of the Pi 5
computers:

1https://github.com/open62541/open62541/tree/v1.3.10/examples/pubsub
realtime (2025-02-06)

Node 1
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Fig. 2. Overview of the test points used for logging processing times,
based on [10], with the addition of T2N, provided via a network tap.

• Schubert Prime Box Pico with Intel Atom Processor
E3950 and two Intel i210 NICs

B. System Modifications to Pi 5

To further improve the real-time networking performance
on the Pi 5 several modifications were applied to the system.
• Deactivating Energy-Efficient Ethernet: The Energy-

Efficient-Ethernet protocol can be deactivated via an
entry in the boot configuration, which means that the
network card can no longer switch to an energy-saving
mode when there is no network traffic. This energy-
saving mode can result in added latencies because of
the wake-up time of the NIC [13].

• Ethernet coalescence: Even though the Ethernet MAC
on the Pi 5 does not support all features which could
improve performance for real-time networking, some
settings are available. rx-usecs and tx-usecs are
available settings. Both settings should be lowered to
reduce the amount of microseconds the Ethernet NIC
waits until triggering an interrupt for packet processing
in the kernel. A value of 0 leads to instant interrupts, but
also generates an interrupt for every incoming packet. In
this experiment the value was set to 0 microseconds to
improve real-time networking performance. As a trade-
off, more interrupts are generated, which lead to more
interrupt handlers and more CPU load.

• Isolating CPU cores: By default the Linux kernel dis-
tributes processes across all CPU cores. This behavior
is unwanted in real-time systems, because processes
should have dedicated CPU cores that should not be
shared with other processes. To isolate the cores, the
isolcpus kernel command line argument can be used.
To further leverage the now single process CPU cores,
the scheduler is set to be tick-free on the specified cores
with nohz full. This setting in turn also offloads all
Read-Copy-Update (RCU) callbacks to other cores [1].

V. RESULTS

For performance analysis, two types of measurements
are evaluated: network capture from the network tap and

Proceedings of the Austrian Robotics Workshop 2025

https://doi.org/10.34749/3061-0710.2025.10 63
Creative Commons Attribution
4.0 International License



D
ra

ft

0 5 10 15 20
Inter-arrival Jitter in µs

0

200000

400000

600000

N
um

be
r

of
sa

m
pl

es

m
ax

Fig. 3. Jitter on test point T1 with 1 ms cycle time on the Raspberry Pi 5.
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Fig. 4. Jitter on test point T1 with 250 µs cycle time on the Raspberry Pi
5.

measurements from test points inside the application (see
Figure 2).

The main difference between these two is, that the for-
mer includes latencies from the Linux kernel and Ethernet
hardware. Therefore, the latter can be used to measure the
real-time performance of a specific Linux kernel on the
device and to indicate at which cycle times the OPC UA
PubSub Protocol over TSN can be used. Even though they
are different measurements and should be treated as such,
the main performance indicator is shared. Jitter of the cycle
time indicates irregular and unpredictable latencies in both
measurement methods. Theoretically, latencies in the Linux
kernel and Ethernet stack should add onto the processing
and process wake-up latencies from within the application.
But features in the Linux kernel implemented for better
real-time networking capabilities, such as traffic control and
the aforementioned SO TXTIME allow for compensation
and better handling of latencies. Therefore, results from the
industrial PCs can have a different relation between the two
measurement methods.

In the TSN example taken from the open62541 library are
multiple test points which can be used to log the exact time
a packet is processed. Figure 2 provides an overview of the
location of these test points.

The differences at the transmission points can be explained
by differences in the operating system and processor as well
as hardware architecture. Due to the different processor
architecture, the operating system could not directly be
duplicated from the Pi 5 to the industrial PCs. Adding onto
the difference in processor architecture is that the Linux
kernel version differs between the two systems, because the
Linux kernel specifically adapted for the Pi 5 was used.

The jitter as defined in [11] is the variation in forwarding
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Fig. 5. Frequency spectrum of jitter on test point T1 for 250 µs cycle time
on the Raspberry Pi 5.
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Fig. 6. Jitter of the network packets on test point T2N with 250 µs cycle
time on the Raspberry Pi 5.

delay between consecutive packets

J = |Di−Di−1|, (1)

where Di is the forwarding delay of a given packet. Given
only the absolute timestamps of packet transmission in our
setup, it is not possible to calculate the forwarding delay. As
an alternative, the jitter is calculated based on the variation
of the difference in timestamps via

J = |(Ti+1−Ti)− (Ti−Ti−1)|, (2)

where Ti is the absolute timestamp of a given packet. The
calculation of jitter outside the application logging is not
trivial due to the network tap not being synchronized with
PTP. The clock drift of the recorded network tap timestamps
is corrected to allow for a meaningful comparison with
PTP synchronized timestamps. A linear clock drift can be
corrected by computing a scaling factor

s =
Tc

1
n ∑n

i=1(Ti−Ti−1)
, (3)

where Tc is the configured cycle time. This scaling factor is
then used to adjust each non-synchronized timestamp. The
remaining non-linear clock drift cannot be compensated
without compromising the integrity of the results. However,
due to the short recording duration, the non-linear clock
drift per packet is assumed to be negligible.

The results in Figures 3 and 4 show that the jitter is very
similar between the cycle time of 1 ms and 250 µs.

To further analyze unwanted cyclic jitter sources in the
system the frequency spectrum of the jitter on point T1
was calculated as shown in Figure 5. From the frequency
spectrum it is clear that the only cyclic jitter source are the
Linux kernel timer interrupts, which were configured to 1kHz
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Fig. 7. Jitter on measuring point on test point T1 with 250 µs cycle time
on the industrial PC.
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Fig. 8. Frequency spectrum of jitter on test point T1 for 250 µs cycle time
on the industrial PC.

on both systems. This behavior is expected, and the added
latencies cannot be completely removed, only mitigated (see
Section IV).

After measuring the performance of the real-time Linux
kernel on the Pi 5 the behavior is expected and maximum jit-
ter values do not exceed 22.02 µs with 250 µs cycle time. To
establish a baseline the same measurements were conducted
on the industrial PCs.

In Figure 7 it can be seen that the industrial PCs produce
higher maximum jitter values than the Pi 5s. While testing
the real-time kernel this behavior has also been observed,
which indicates further that the jitter on measuring point
T1 closely represents the jitter of thread wake up times.
As already mentioned there is a change in processor archi-
tecture and hardware topology including but not limited to
changes in cache layout between both systems [15]. These
changes can have a big impact on real-time performance.
Furthermore, Figure 8 shows that there is a low frequency
jitter source visible, but the dominant frequency is still
caused by Linux kernel timer interrupts. The low frequency
jitter sources may be the System management interrupt
(SMI) of Intel processors, which cause unavoidable latencies
in the system. Using the hwlatdetect-utility (from the
rt-tests package) the SMI interrupts were measured to
cause 12 µs of latency with a frequency of 1 Hz [19].

It has to be noted that the minimum cycle time successfully
used was 250 µs, lower cycle times lead to crashes in the
application on both systems. Therefore, this does not indicate
that lower cycle times are not possible on the exact hardware
used.

To further compare the performance to the industrial PCs,
the network capture is analyzed. As previously mentioned,
the network tap adds accurate timestamps to incoming pack-
ets to prevent inaccurate timestamps from the computer
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Fig. 9. Jitter of the network packets on test point T2N with 250 µs cycle
time on the industrial PCs.

TABLE I
SUMMARY OF THE MEASURED JITTER DISTRIBUTIONS ACROSS

DIFFERENT TEST POINTS AND HARDWARE CONFIGURATIONS.

Device Test Rate Median 25% 75% 99% Max
Point (µs) (µs) (µs) (µs) (µs) (µs)

RPi5 T1 250 0.075 0.037 0.166 0.610 22.016
RPi5 T1 1000 0.055 0.019 0.093 1.592 19.980
IPC T1 250 0.466 0.213 0.810 2.158 67.140
RPi5 T2N 250 0.512 0.208 0.792 1.416 27.719
IPC T2N 250 0.000 0.000 0.008 0.288 3.376

running the recording software. This does mean that the
network tap is not synchronized to the clock of the PTP
master. Therefore, the non-linear clock drift between the two
clocks cannot be deducted from the packet timestamps. It is
also not possible to calculate the absolute jitter of a packet
from T1 to the network due to the missing common time.
The jitter values in the following plots are calculated from the
difference between two timestamps, which mostly removes
clock drift from the results.

As Figures 6 and 9 illustrate, there is a significant differ-
ence in jitter between the two systems when comparing jitter
of the network packets. The Pi 5 procures similar jitter values
on the network as on measuring point T1. In contrast, the
industrial PC is able to reduce the maxmium jitter of network
packets down to 3.38 µs. This reduction in jitter can solely
be contributed to the SO TXTIME feature of the Intel i210
NIC.

VI. DISCUSSION AND FUTURE WORK

The results clearly show that industrial PCs have better
real-time networking performance than the Pi 5, which was
expected. The main reason is the Intel I210 NIC, which can
be fine-tuned for a specific network topology and traffic to
achieve better timing. Note that this finding only applies to
the industrial PCs used in this experiment as there are various
configurations with different NICs. The identified required
features are available in Intel I210 and similar featured
NICs [3].

The Pi 5, on the other hand, does not use an equally
featured NIC and therefore offers reduced performance in
this application. It has to be decided on a case-by-case basis
whether this system is sufficient. For software based real-
time networking the jitter can be compared to different test-
ing setups including Ethercat and Powerlink from OSADL.
These tests are available at [8] and [9]. At the time of writing
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the maximum jitter of 5 minute intervals over 24 hours on
the Powerlink setup fluctuated from 31 µs down to 12 µs on
a 500 µs cycle time. This setup does not utilize an Intel i210
NIC [9]. If the maximum jitter of network packets on the
Pi 5 does not increase on long-term measurements, the real-
time networking performance of the Pi 5 may suffice for the
task of a software based Powerlink master.

To strengthen our findings, a long-term experiment using
the testing setup described in this paper should be done. Fur-
thermore, an OT device leveraging the real-time networking
capabilities of the Pi 5 needs to be implemented to ensure the
findings also apply outside the testing environment. Such an
environment introduces non-real-time packets and therefore
tests the resiliency possible on the NIC of the Pi 5.

VII. CONCLUSION

In this paper, we investigated the feasibility of using a
Raspberry Pi 5 computer as a replacement of an industrial
computer for real time communication. The Pi 5 computer
was selected for this purpose due to its excellent low-level
connectivity, compact form factor and the guaranteed long-
term availability until 2036.

The findings in regard to the performance of the Pi 5 to
perform real-time communication tasks using OPC UA over
Time-Sensitive Networking (TSN) (RQ1) indicate that the
Pi 5 indeed can be used as an OPC UA Node for real-time
communication using the PubSub mechanism. However, we
have to note that the results of this work are only applicable
to small TSN networks with no additional network traffic
and cross load. Furthermore, the lack of the NIC features
may degrade the real-time networking performance.

The performance analysis of the Pi 5 to an industrial
P (RQ2) showed that the latter using an Intel i210 NIC
improves the jitter behavior of network packets utilizing the
SO TXTIME option. In detail, the maximum jitter of 3.38 µs
is significantly reduced when compared to the maximum
jitter on the Pi 5, which is 27.72 µs. One should also take into
account that, industrial PCs typically offer other advanced
features that enable hardware traffic control for packets with
different priorities, which is important in mixed or large TSN
networks.

Although the Pi 5 does not achieve a comparable result
in packet jitter in the network, it offers other advantages
over industrial PCs. The powerful and efficient single-board
computer provides a vast range of interfaces including GPIO,
Camera Serial Interface and Display Serial Interface. Further-
more, alternative variants like the Compute Module 5 make
custom real-time networking hardware more accessible [14].
Moreover, we showed that the Pi 5 presents a compelling
alternative, facilitating rapid prototyping of applications and
significantly reducing associated costs for laboratory setups
only requiring small-scale networks.

ACKNOWLEDGMENT

The financial support by the Christian Doppler Research
Association, the Austrian Federal Ministry for Digital and
Economic Affairs and the Federal State of Salzburg is
gratefully acknowledged.

REFERENCES

[1] “The Linux kernel documentation,” accessed: 2025-03-04. [Online].
Available: docs.kernel.org

[2] IEEE 802.1 Time-Sensitive Networking Task Group, “Time-sensitive
networking (TSN) task group,” 2024, accessed: 2025-03-04. [Online].
Available: https://1.ieee802.org/tsn/

[3] Intel Corporation, “Intel® Ethernet controller I210 datasheet,”
jan 2021, revision Number: 3.7. [Online]. Avail-
able: https://www.intel.de/content/www/de/de/products/sku/64402/
intel-ethernet-controller-i210it/specifications.html

[4] M. Ladegourdie and J. Kua, “Performance analysis of OPC
UA for industrial interoperability towards industry 4.0,” IoT,
vol. 3, no. 4, pp. 507–525, 2022. [Online]. Available: https:
//www.mdpi.com/2624-831X/3/4/27

[5] Linux PTP Project, “The Linux PTP project,” 2019, accessed:
2025-03-04. [Online]. Available: https://linuxptp.sourceforge.net/

[6] A. Morato, S. Vitturi, F. Tramarin, and A. Cenedese, “Assessment
of different OPC UA implementations for industrial IoT-based mea-
surement applications,” IEEE Transactions on Instrumentation and
Measurement, vol. 70, pp. 1–11, 2021.

[7] Open Source Automation Development Lab OSADL eG,
“OSADL QA farm on real-time of mainline Linux,”
accessed: 2025-03-04. [Online]. Available: https://www.osadl.org/
OSADL-QA-Farm-Real-time.linux-real-time.0.html

[8] ——, “OSADL QA farm on real-time of mainline
Linux: Real-time Ethernet ethercat worst-case round-trip
time monitoring,” accessed: 2025-03-04. [Online]. Avail-
able: https://www.osadl.org/Real-time-Ethernet-Ethercat-worst-case.
qa-farm-rt-ethernet-recording.0.html

[9] ——, “OSADL QA farm on real-time of mainline
Linux: Real-time Ethernet powerlink packet interval and
jitter analysis,” accessed: 2025-05-04. [Online]. Avail-
able: https://www.osadl.org/Real-time-Ethernet-Powerlink-jitter-an.
qa-farm-rt-powerlink-jitter.0.html

[10] J. Pfrommer, A. Ebner, S. Ravikumar, and B. Karunakaran,
“Open source OPC UA PubSub over TSN for realtime industrial
communication,” in 2018 IEEE 23rd International Conference on
Emerging Technologies and Factory Automation (ETFA), vol. 1, Sept.
2018, pp. 1087–1090. [Online]. Available: https://ieeexplore.ieee.org/
document/8502479/

[11] S. Poretsky, S. Erramilli, J. Perser, and S. Khurana, “Terminology
for Benchmarking Network-layer Traffic Control Mechanisms,” RFC
4689, Oct. 2006. [Online]. Available: https://www.rfc-editor.org/info/
rfc4689

[12] Raspberry Pi Ltd, “Raspberry Pi compute module 5 datasheet: A
Raspberry Pi for deeply embedded applications.” 2024, accessed:
2025-03-04. [Online]. Available: https://datasheets.raspberrypi.com/
cm5/cm5-datasheet.pdf

[13] ——, “Raspberry Pi documentation: config.txt,” 2024, accessed:
2025-03-04. [Online]. Available: https://www.raspberrypi.com/
documentation/computers/config txt.html

[14] ——, “Raspberry Pi RP1 peripherals datasheet,” 2024, accessed:
2025-03-04. [Online]. Available: https://datasheets.raspberrypi.com/
rp1/rp1-peripherals.pdf

[15] ——, “Raspberry Pi 5 product brief,” 2025, accessed: 2025-
03-04. [Online]. Available: https://datasheets.raspberrypi.com/rpi5/
raspberry-pi-5-product-brief.pdf

[16] G. P. Reddy, Y. V. P. Kumar, Y. J. Reddy, S. R. Maddireddy, S. Prab-
hudesai, and C. P. Reddy, “OPC UA implementation for industrial
automation - part 2: Integrating PubSub model with TSN,” in 2023 1st
International Conference on Circuits, Power and Intelligent Systems
(CCPIS), 2023, pp. 1–6.

[17] M. Ulbricht, S. Senk, H. K. Nazari, H.-H. Liu, M. Reisslein, G. T.
Nguyen, and F. H. P. Fitzek, “TSN-FlexTest: Flexible TSN measure-
ment testbed,” IEEE Transactions on Network and Service Manage-
ment, vol. 21, no. 2, pp. 1387–1402, 2024.

[18] A. Waterland, “stress(1) - linux man page.” [Online]. Available:
https://linux.die.net/man/1/stress

[19] K. Williams, “rt-tests - suite of real-time tests.” [Online]. Available:
https://web.git.kernel.org/pub/scm/utils/rt-tests

Proceedings of the Austrian Robotics Workshop 2025

https://doi.org/10.34749/3061-0710.2025.10 66
Creative Commons Attribution
4.0 International License



D
ra

ft

Multi-Modal 3D Mesh Reconstruction from Images and Text

Melvin Reka1, Tessa Pulli1, and Markus Vincze1

Abstract— 6D object pose estimation for unseen objects is
essential in robotics but traditionally relies on trained models
that require large datasets, high computational costs, and
struggle to generalize. Zero-shot approaches eliminate the need
for training but depend on pre-existing 3D object models, which
are often impractical to obtain. To address this, we propose
a language-guided few-shot 3D reconstruction method, recon-
structing a 3D mesh from few input images. In the proposed
pipeline, receives a set of input images and a language query.
A combination of GroundingDINO and Segment Anything
Model outputs segmented masks from which a sparse point
cloud is reconstructed with VGGSfM. Subsequently, the mesh
is reconstructed with the Gaussian Splatting method SuGAR.
In a final cleaning step, artifacts are removed, resulting in the
final 3D mesh of the queried object. We evaluate the method
in terms of accuracy and quality of the geometry and texture.
Furthermore, we study the impact of imaging conditions such
as viewing angle, number of input images, and image overlap on
3D object reconstruction quality, efficiency, and computational
scalability.

Index Terms— Vision Language Models, Language-guided
Reconstruction, Few-shot Reconstruction

I. INTRODUCTION

6D object pose estimation for unseen objects is a critical
task in robotics. Traditional methods estimate instance object
poses using trained networks [1–4]. However, training mod-
els for object pose estimation is a limitation as it requires
large annotated datasets, has high computational costs, and
encounters difficulties in generalizing to unknown objects
or environments [5]. An alternative to these methods are
training-free zero-shot approaches [6, 7]. Methods such as
ZS6D [6] utilize a ground-truth object model to find 2D-3D
correspondences between the model and the images from

1 all authors are with the Automation and Control Institute, TU
Wien Vienna, Austria: e12102393@student.tuwien.ac.at;
{pulli, vincze}@acin.ac.tuwien.at

which the pose is computed using a PnP algorithm [8].
Although these methods offer a considerable advantage due
to their zero-shot capabilities, they are limited by the require-
ment for a ground-truth 3D object model[2, 6]. Obtaining
high-quality 3D models can be labor-intensive, expensive,
and impractical for large-scale or real-time applications [9].
With the advent of diffusion models, recent works have
proposed methods for few-shot[10, 11] or even single-
shot [10, 12] 3D model reconstruction based on images. By
combining SuGAR [11] with Segment Anything Model [13]
(SAM) and GroundingDINO [14], we introduce a novel
method to reconstruct 3D models based on images and
language prompts. As input, we receive several RGB images
of a scene. According to the language input, the queried
object is detected with GroundingDINO [14]. Based on the
bounding box, SAM [13] generates masked images depicting
only the queried object. This serves as input for a sparse
reconstruction with VGGSfM [15]. The sparse point cloud
is then processed by SuGAR [11] to reconstruct a 3D mesh.
In an automated post-processing step, artefacts are removed,
resulting in a cleaned mesh. Finally, the reconstruction
is evaluated on several experiments in terms of accuracy
and quality of the geometric reconstruction as well as the
reconstructed texture.

In summary, the paper has the following key contributions:
• We propose a novel language-guided few-shot recon-

struction approach that allows 3D model reconstruction.
• Evaluation of the few-shot reconstruction method, in-

cluding an analysis of the required input images consid-
ering efficiency and performance of the reconstruction.

The rest of this work is organized as follows: Section II
introduces the related work of 6D object pose estimation,
3D model reconstruction, and language-guided segmentation.
Section III describes the pipeline of our proposed methods. In

Fig. 1. Images of an object, accompanied by a descriptive text prompt, are processed through the pipeline. A sparse reconstruction using COLMAP via
VGGSfM is then performed to generate and refine the mesh with SuGaR.
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Section IV, the experimental setup is presented while Section
V discusses the evaluation. Section VI concludes the paper
with a summary and outlook.

II. RELATED WORK

In this section, we discuss the related work by revisiting
6D object pose estimation, few-shot reconstruction methods,
and language-guided object segmentation.

A. 6D Object Pose Estimation

6D object pose estimation of unseen objects is a core task
in robotics. Classical methods estimate the pose of objects
using trained networks for object instances [1–3]. These
methods require large annotated datasets, which are costly
to acquire while requiring high computational power during
training [5]. Furthermore, these models struggle to generalize
to unseen objects [1, 3, 4], limiting their applicability in
real-world scenarios. These challenges can be overcome
with zero-shot object pose estimation methods [6, 7]. These
approaches eliminate the need for extensive training by
leveraging prior knowledge by assuming that object models
exist. Given the reference model, 2D-3D correspondences
between the object’s model and a set of input images
can be established [8]. With this information available, the
object pose is computed by a PnP/RANSAC algorithm [16].
Although zero-shot methods offer a significant advantage
by overcoming the training phase, they still require high-
quality ground-truth 3D models. This dependency presents
challenges in practical applications, as the acquisition of
accurate 3D models is labor-intensive and requires expensive
equipment [17].

B. Few-Shot 3D Reconstruction Methods

Recent advances in generative models, particularly dif-
fusion models, have opened new possibilities to acquire
3D meshes. Works such as Wonder3D [12], Gaussian Sur-
fels [18], Dreamfusion [19], and Sugar [11] have demon-
strated the potential of generating 3D object representations
from a limited number of 2D images. Typically, these
methods use 2D diffusion models to generate novel views
from different camera poses. From these novel views, a 3D
model is reconstructed with a stochastic 3D reconstruction
framework [19] or can be parameterized as a voxel radiance
field from which the mesh is extracted with a marching cubes
procedure [20]. Because existing reconstruction methods typ-
ically assume clean, isolated object inputs, several methods
introduced a pre-processing step to delete the background
of the input images to avoid noise while reconstructing the
images [21].

C. Language Guided Object Segmentation

The integration of vision-language models (VLMs) such
as CLIP [22] has significantly expanded the capabilities of
computer vision systems, allowing them to understand and
process images based on textual descriptions. CLIP [22]
has been incorporated into a wide range of applications,
allowing methods including scene understanding [23], object

recognition [24], and generative modeling [19]. An area
where this integration has proven particularly beneficial is
object segmentation [13], where language-guided approaches
allow for more intuitive and adaptable object selection.
Recent advances in segmentation models provide a method
to segment objects in an image using minimal user input.
SAM [13] allows for object selection through different
means, such as points, bounding boxes, or language-based
prompts, making it an effective tool for isolating objects in
complex scenes. By leveraging SAM’s capabilities, objects
can be accurately segmented and masked before being passed
into a 3D reconstruction pipeline.

III. METHOD

As shown in Figure 1, images of the object, along
with a descriptive text prompt, are processed through the
pipeline. LangSAM [25] combines GroundingDINO [14] and
SAM [13] for text-driven segmentation. GroundingDINO
processes the text prompt to generate bounding boxes around
relevant objects, which SAM then uses to create binary
masks with a 50-pixel padding. This padding proved helpful
when handling semi-transparent objects and reduces artifacts
introduced during mesh reconstruction. Focusing on essential
scan areas enhances reconstruction quality while maintaining
computational efficiency.
The generated masks, along with the original images, are
then used for 3D reconstruction with VGGSfM [15]. As a
fully differentiable structure-from-motion pipeline, VGGSfM
estimates camera parameters, determines camera positions,
and reconstructs a sparse point cloud by tracking corre-
sponding 2D points across multiple views. This end-to-end
differentiable approach enhances the accuracy and robustness
of the reconstruction process by eliminating the need to
chain pairwise matches and enabling simultaneous recovery
these[15].
Using the resulting COLMAP[26] dataset and the extracted
RGB masks, a textured mesh is generated with SuGaR[11],
which employs Gaussian Splatting to efficiently optimize and
extract a high-resolution 3D surface. However, since SuGaR
can introduce artifacts during mesh generation, an automated
script utilizing PyMeshLab[27] is applied to remove these
artifacts.

IV. EXPERIMENTS

In this section, the experimental setup is discussed. During
our evaluation, we assess the accuracy and quality of the
geometric construction as well as the reconstructed texture.

A. Implementation details:

All experiments are conducted on a system equipped
with an AMD Ryzen 9 5950X CPU, 128GB RAM, and
an NVIDIA RTX 3090 GPU with 24GB VRAM. The
implementation is containerized using Docker to ensure
reproducibility across different hardware environments.

Proceedings of the Austrian Robotics Workshop 2025

https://doi.org/10.34749/3061-0710.2025.11 68
Creative Commons Attribution
4.0 International License



D
ra

ft

B. Evaluation Metrics

To assess the accuracy and quality of both geometric
reconstruction and texture extraction, we distinguish between
geometric metrics and texture similarity.

Geometric Metrics
We evaluate the reconstructed 3D geometry using Chamfer

Distance [28] and Intersection over Union [29]. CD quanti-
fies the average squared distance between nearest neighbors
in the predicted and ground-truth meshes. It is defined as:

CD(P,Q) =
1
|P| ∑p∈P

min
q∈Q
∥p−q∥2+

1
|Q| ∑q∈Q

min
p∈P
∥q− p∥2 (1)

where P and Q are the sets of points in the predicted and
ground-truth meshes. Low CD values indicate a more precise
geometric alignment.

IoU measures the volumetric similarity between the recon-
structed and ground-truth models:

IoU =
|VP∩VQ|
|VP∪VQ|

(2)

where VP and VQ represent the volumetric reconstructions
of the predicted and ground-truth meshes. IoU measures
the proportion of the shared volume, with higher values
indicating better alignment.

Texture Similarity
To assess texture extraction accuracy, we use the three key

metrics employed in SuGaR [11].
The Peak Signal-to-Noise Ratio is defined as:

PSNR = 10log10

(
MAX2

MSE

)
(3)

where MAX is the maximum possible pixel value, and
MSE is the mean squared error between the predicted
and ground-truth textures. Higher values indicate better
pixel-wise preservation, but do not reflect human perception.

The Structural Similarity Index [30] takes into account
luminance, contrast, and texture integrity, reflecting human
perception. SSIM is computed as:

SSIM(x,y) =
(2µxµy +C1)(2σxy +C2)

(µ2
x +µ2

y +C1)(σ2
x +σ2

y +C2)
(4)

where µx and µy are the mean intensities, σ2
x and σ2

y are the
variances, and σxy is the covariance between the predicted
and ground-truth images.

The Learned Perceptual Image Patch Similarity [31] is
given by:

LPIPS(x,y) = ∑
l

wl ∥Fl(x)−Fl(y)∥2
2 (5)

where Fl represents the feature maps at layer l of a pretrained
network, and wl are learned weights. LPIPS captures high-
level perceptual differences, making it effective for identify-
ing distortions and artifacts beyond pixel-wise comparisons.

C. Experimental Setup

Our experiments evaluate the impact of various imag-
ing conditions on the quality of 3D object reconstruction.
We investigate how the viewing angle θ influences feature
extraction and reconstruction accuracy, as different angles
affect feature visibility. We also examine the effect of the
number of input images on reconstruction convergence,
assessing how multi-view stereo improves model quality.
The overlap between input images, determined by rotation
step sizes ϕ , is another factor influencing reconstruction
accuracy. Mesh quality is assessed by comparing the texture
extraction accuracy and alignment with ground truth. Finally,
a runtime analysis measures the scalability of computational
costs with the number of input images and processing steps,
balancing efficiency and accuracy in real-time applications.
These experiments aim to understand the influence of these
parameters on reconstruction quality, efficiency, and robust-
ness.

Fig. 2. Spherical coordinates, where we refer to the polar angle θ as
viewing angle, and to the azimuthal angle ϕ as

Furthermore, we assess mesh quality, focusing on the
accuracy of texture extraction and the overall fidelity of
the reconstructed surfaces. Finally, we conduct a runtime
analysis to measure how computational cost scales with the
number of input images and processing steps, balancing
efficiency and accuracy in multi-view stereo reconstruction.

D. Dataset

To evaluate the capabilities of the proposed work, we
utilize the MVS dataset [32] consisting of two sets of multi-
view images, their camera parameters, and the ground-truth
mesh models. It includes multiple views of each scene,
captured from different angles to provide a diverse set of
perspectives. The viewing angles are characterized by two
key parameters: theta (θ ), the polar angle, which defines the
elevation or vertical angle from which the scene is viewed.
2.

θcat ∈ {30◦,45◦,75◦}∧θdog ∈ {45◦,90◦}
Phi ϕ , the azimuthal angle, which represents the horizontal

rotation around the scene. By capturing images across vary-
ing θ and ϕ angles, the dataset offers a comprehensive range
of viewpoints. Figure 3 shows examples of the dataset and
its target objects which are figurines of a cat and a dog. The
images are taken with the camera by changing the height of
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the camera with three different viewing angles. θ is the polar
angle between the z-axis and the camera position, which we
refer to as θ , as it can be seen in Figure 3.

Fig. 3. THU Multi-view stereo datasets [32] of a cat and a dog. The
left side shows the input images captured from various viewpoints, while
the right side displays the corresponding camera viewpoints and the target
objects.

V. EVALUATION

This evaluation assesses the performance of the proposed
method based on input images, focusing on the trade-off
between accuracy and efficiency. Specifically, we analyze
which input configurations yield the most precise reconstruc-
tions while maintaining computational efficiency.

Number of Input Images
In a first experiment, we show the impact of the number

of input images on the geometric reconstruction quality.
We used three different sets of images according to the
three camera viewing angle θ (30°, 45°, 75°). While several
combinations of rotation angles between images are possi-
ble, we chose the best result for each number of images,
neglecting factors such as overlap between images as these
are investigated in the following experiments. Figute 7 shows
that for each of these data sets, the model converges for
both CD and IoU approximately from 15 images onward
while the best performance is achieved with the maximum
number of input images of 36. However, some outliers
deviate significantly from this trend, which can be attributed
to the effects of overlap and coverage.

Runtime
In Figure 4, the model exhibits a linear runtime increase

with the number of images up to 18. At 36 images, a
drop-off occurs as VGGSfM is downscaled by half to fit
within the available VRAM, resulting in a lower-quality
reconstruction but a more accurate overall outcome. The
runtime is divided into three parts: segmentation (negligible),
sparse reconstruction (scales linearly with image count), and
mesh extraction (consistently 4–5 minutes).

Viewing Angle Theta θ
In the first experiment, we investigate how different cam-

era angles θ affect reconstruction quality. Therefore, the
relationship between the number of images and different
camera angles is used on the example of the cat and dog
figurines. Figure 5 presents the best reconstruction results
in terms of IoU and CD for each tested viewing angle θ .
While multiple configurations are possible, we report only
the optimal results for each angle.

Fig. 4. Runtime vs. input images for θ = 45◦,∆ϕ = 10◦

Our findings indicate that the ideal angle of incidence for
both objects is 45°. At this angle, VGGSfM achieves the
most effective feature extraction, as it captures both the top
and front of the object within the same image. This results
in a higher number of extracted points without increasing
the total number of input images, outperforming alternative
angles such as 30° and 75° for the cat and 90° for the dog.

Fig. 5. IoU and Chamfer Distance for cat figurine at different θ angles.

Overlap of Input Images

To reduce runtime and the computational effort required
for mesh reconstruction, the following experiments explore
how the input image set can be optimized. A key factor in
this process is the overlap of input images. With a small
rotation step (∆ϕ) and few images, the visible areas are
well-reconstructed, but limited coverage lowers benchmark
scores despite reasonable results for small datasets. On the
other hand, using few images and a large rotation step
(∆ϕ), leads to insufficient feature overlap and therefore an
incomplete mesh. Increasing the number of images with a
small ∆ϕ enhances reconstruction quality, but the results are
still limited to the visible areas. A balanced approach, such
as 12 images with ∆ϕ = 30◦), achieves comparable quality to
using three times as many images, improving both accuracy
and coverage.
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Fig. 6. IoU and Chamfer Distance for dog figurine at fixed θ and ∆ϕ

Nr. of images ∆ϕ [DEG] CD ↓ IoU [%] ↑ Runtime [min] ↓
4 10° 0.0376 47.91 8.75
4 90° 0.0277 43.52 9.70
12 10° 0.0162 63.32 16.59
12 30° 0.0100 78.72 16.06
36 10° 0.0087 82.91 21.95

TABLE I
OVERLAP EXTREMES VS. IMAGE COUNT FOR CAT AT θ = 45◦

Mesh Quality
As shown in Table II, images taken with smaller θ angles,

such as top-down views, result in better texture similarities.
Top-down perspectives provide a clearer view of surface de-
tails, making it easier to capture fine-grained textures. In con-
trast, frontal views with higher θ values lead to lower quality
meshes due to occlusions and the lack of sufficient top-
view coverage, making it difficult to accurately reconstruct
the surface. Optimizing the pipeline and capturing images
from the optimal angle leads to significantly improved SSIM
and LPIPS scores, which, in human perception, translates to
textures that closely resemble the ground truth.

Figurine θ [DEG] PSNR [dB] ↑ SSIM ↑ LPIPS ↓
Cat 30° 33.95 0.967 0.0373
Cat 45° 31.75 0.947 0.0546
Cat 75° 13.52 0.644 0.2516
Dog 45° 34.35 0.972 0.0353
Dog 90° 22.66 0.843 0.1195

TABLE II
TEXTURE QUALITY AT DIFFERENT θ WITH 36 IMAGES. VALUES

PRINTED IN BOLD INDICATE THE BEST RESULT FOR EACH FIGURINE

VI. SUMMARY AND OUTLOOK

This paper analyzes how the angle of incidence and the
angular distance between input images affect photogrammet-
ric reconstruction quality. We show that an optimal balance
between image count and angular separation significantly
enhances mesh quality, while excessive gaps hinder feature
matching. A key challenge identified is scale estimation,

Fig. 7. Overlap of input images comparison for θ = 45◦

which could be improved by integrating a reference object
for automatic scaling. Additionally, sparse reconstruction is
a major computational bottleneck, suggesting the need for
more efficient alternatives. Future work should focus on
optimizing reconstruction pipelines to improve runtime and
scale consistency, making the approach more suitable for
large-scale or real-time applications.
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Sensorized Adaptive Grasping: ROS2 Based Integration of UR3e and
Schunk SVH with Force Sensors

Youssef Aboud1, Andrew Johnson1, Gidugu Lakshmi Srinivas1 and Mathias Brandstötter1

Abstract— Robotic grasping is a critical challenge in automa-
tion, requiring precise control to handle objects of varying
shapes and fragility. While industrial robotic arms offer reliable
motion control, their ability to adapt gripping force dynamically
is often limited. This work addresses the need for force-sensitive
grasping by integrating the Universal Robot UR3e with the
Schunk SVH robotic hand in a ROS2-based framework. The
key innovation lies in a real-time force-controlled grasping
system, where force sensors embedded in the fingers provide
continuous feedback to regulate applied force. The system
operates within a closed-loop control structure, ensuring that
no additional force is applied to the object once the required
force is reached. This prevents deformation or slippage, en-
abling safer and more adaptive handling. The framework was
validated through simulated grasping tasks involving objects
such as a ball, a square block, and an apple. Each task tested the
system’s ability to adjust its grip in response to sensor feedback.
The integration process included configuring ROS2-based com-
munication, developing motion planning using MoveIt2, and
visualizing robot trajectories in RViz. The UR3e trajectories
were tested in Gazebo to simulate grasping interactions before
real-world deployment, ensuring reliable execution. Future
work will focus on enhancing object detection by integrating
computer vision modules into the study. A camera system
automatically identifies and localizes objects, reducing reliance
on predefined grasping positions. This addition will enable
autonomous grasp selection, making robotic manipulation more
adaptive in unstructured environments.

Index Terms— ROS2 robotic manipulation, Schunk SVH,
Universal Robot UR3e, Adaptive force feedback, closed-loop
control system, Sensorised grasping

I. INTRODUCTION

Robotic grasping remains a fundamental challenge in
industrial automation, service robotics, and human-robot
interaction. While robotic arms have achieved high precision
in motion execution, their ability to handle objects with
varying shapes and fragility remains limited. Traditional
position-controlled grasping methods lack adaptability, of-
ten leading to excessive force application or unstable grip
performance [1]. Force-controlled grasping, where tactile
sensors provide real-time feedback, enables robots to interact
safely and effectively with objects [3]. Several industries,
including manufacturing [15], healthcare [17], and logistics
[11], demand robotic systems that can grasp objects without
predefined parameters. Integrating force sensors in robotic
hands enhances adaptability, ensuring secure and precise ma-
nipulation without damaging delicate objects [12]. Existing
research has explored sensor-driven grasping using various
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robotic hands [14], but there is still a gap in seamlessly
integrating force feedback within ROS2-based control archi-
tectures. This work addresses this limitation by developing a
real-time force-controlled grasping system for the Universal
Robots UR3e and Schunk SVH hand, fully integrated within
the ROS2.

Several studies have focused on enhancing robotic
grasping through sensor integration and adaptive control.
Researchers have explored tactile sensor-based grasping,
demonstrating improved grip stability using force sensors
on robotic fingers [16], [6]. The Schunk SVH hand has
been studied for its human-like dexterity [4], but its potential
for adaptive grasping in a ROS2-based environment remains
under-explored. While such five-fingered, highly sensitive
grippers offer impressive manipulation capabilities, they are
not widely adopted in industrial applications due to their
complexity and cost. As a result, their use is still largely
confined to research environments, where more advanced
dexterity and nuanced control are of interest. The Uni-
versal Robots UR3e has been widely used in ROS-based
applications [13], with works focusing on motion planning
using MoveIt2 [7] and real-time execution with RTDE [9].
However, previous studies [18] often rely on position control
rather than force feedback, limiting adaptability. Simulated
environments like Gazebo have proven effective for testing
robotic grasping strategies [8]. Studies integrating ROS and
Gazebo have focused on collision-free grasping and trajec-
tory optimization [10], yet a complete pipeline combining
force sensing, ROS2, and dynamic control has not been
fully realized. Additionally, recent works on sensor fusion for
robotic grasping highlight the importance of integrating mul-
tiple sensing modalities, including force sensors and vision
systems, to achieve optimal grasping strategies [2]. Addi-
tionally, learning-based approaches leveraging reinforcement
learning have demonstrated improved adaptability by en-
abling robots to refine their grasping techniques dynamically
in unstructured environments [5].

The primary objectives of this paper are to design and
implement a ROS2-based control framework that seamlessly
integrates the UR3e robotic arm and the SVH five-fingered
robotic hand, to develop advanced algorithms for real-time,
sensor-driven grip adjustment, and to evaluate the system’s
performance in dynamic manipulation tasks rigorously. By
leveraging the high precision and repeatability of the UR3e,
the human-like dexterity and grasping capabilities of the
SVH hand, and the adaptability enabled through continuous
sensor feedback, this work seeks to push the boundaries of
robotic manipulation in complex, unstructured environments.
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Fig. 1. The hardware and software architecture for ROS2-based adaptive
grasping with UR3e, Schunk SVH, Arduino, and force sensors

Through this integration, the paper aims to contribute to more
autonomous, flexible, and robust robotic systems capable of
performing nuanced tasks in real-world applications.

II. METHODOLOGY

A. Hardware and Software Architecture

The system integrates hardware and software components
to enable adaptive force-controlled grasping using the UR3e
robotic arm and Schunk SVH end effector. The primary
objective is to create a closed-loop control mechanism that
dynamically adjusts grip force based on real-time sensor
feedback, ensuring reliable and effective manipulation of
objects. This architecture is built around the ROS2 middle-
ware, Python for data processing and control, an Arduino
microcontroller for sensor communication, and SingleTact
force sensors for force measurement, as shown in Fig. 1.

ROS2 is the core communication framework facilitat-
ing data exchange between different system components.
It provides real-time messaging and distributed computing
capabilities that allow nodes running on the control lap-
top, UR3e robotic arm, and Schunk SVH end effector to
interact efficiently. The ROS2 middleware is responsible
for processing position commands, reading joint states, and
handling interrupts triggered when predefined force thresh-
olds are exceeded. This ensures that grasping actions are
dynamically adjusted based on real-time feedback, making
it suitable for handling fragile or deformable objects without
damage. Python is crucial for system monitoring, sensor
data processing, and implementation of control logic. A
Python script running on the control laptop continuously
listens to incoming data from the force sensors transmitted
via the Arduino. The script evaluates whether the grip force
exceeds a predefined threshold and, if necessary, publishes an
interrupt message to ROS2. This interrupt triggers the system
to read the current position of the Schunk SVH fingers and
adjust the grip trajectory accordingly. Once the target force
level is reached, the Schunk hand is activated to hold the
object securely. By leveraging Python’s real-time processing
capabilities, the system ensures that gripping forces remain
within optimal limits, preventing excessive force application
and object slippage.

The Arduino microcontroller intermediates the force sen-
sors and the ROS2-based control system. The force sensors
are physically attached to the fingers of the Schunk SVH

end effector, and their readings are collected and processed
by the Arduino. These readings are then forwarded via
a serial connection to the control laptop, where Python
scripts interpret and analyze the data. The Arduino operates
continuously, ensuring that sensor values are relayed in
real-time without delay. This low-level sensor acquisition
and communication process is essential for the higher-level
control algorithms that govern adaptive grasping. A key
component in the system’s force-sensing capability is the
SingleTact force sensor, which provides precise and high-
resolution force measurements. The sensor is integrated with
a control board that converts analog signals into digital
values, ensuring stability and accuracy under different grasp-
ing conditions. These digital readings are transmitted to the
Arduino through an I2C (Inter-Integrated Circuit) interface,
allowing for efficient data acquisition. The control board
also handles sensor calibration, ensuring the force readings
remain reliable and consistent. Integrating these sensors into
the system enables continuous force feedback, allowing for
fine-tuned adjustments to the grip strength of the robotic
hand.

B. UR3e Integration and Control in ROS2
The UR3e was integrated within the ROS2-based system

to provide precise motion control and seamless coordination
with the Schunk SVH end-effector. The setup involved
configuring network communication, installing the ROS2
driver, validating hardware functionality, and developing
custom scripts for motion planning and control. To ensure
compatibility with ROS2, the system was set up with Ubuntu
and ROS2 Humble. Network communication was established
by assigning static IP addresses to both the control PC
and the UR3e teach pendant, enabling direct Ethernet-based
communication.

The Universal Robots ROS2 driver was obtained from the
official GitHub repository1 and compiled within the ROS2
workspace. A communication program was created on the
UR3e teach pendant to enable external command execution.
Once the driver was launched on the PC, remote operation
of the UR3e was activated, allowing full control via ROS2.
To verify hardware functionality, the UR3e was tested using
ROS2 service calls and topic-based communication, ensuring
proper joint state updates and motion command execution.
For simulation, Gazebo was installed, along with the official
Universal Robots ROS2-Gazebo integration package2. This
setup provided a virtual testing environment, allowing trajec-
tory validation before real-world execution. The combination
of simulation and physical validation enabled safe experi-
mentation with different control strategies, ensuring reliable
robot performance.

C. Motion Control and Trajectory Execution
The motion control of the UR3e robotic arm was im-

plemented using MoveIt2 in ROS2, allowing for joint and

1https://github.com/UniversalRobots/Universal_
Robots_ROS2_Driver

2https://github.com/UniversalRobots/Universal_
Robots_ROS2_Gazebo_Simulation
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Cartesian-based movement execution. Python scripts were
developed to control the UR3e’s motion using inverse keni-
matics and trajectory planning. MoveIt2 provided advanced
motion planning features, including collision avoidance and
optimized path execution, ensuring smooth and adaptive
manipulation. ROS2 nodes were programmed to adjust the
robot’s movement based on sensor feedback dynamically,
enabling precise grasping and interaction with objects. The
implementation leveraged action servers to execute mo-
tion commands efficiently, ensuring real-time adaptability in
robotic grasping tasks.

1) Joint Control Using MoveIt2: Joint-based control reg-
ulated individual joint angles, allowing precise control over
the UR3e’s motion. Instead of defining Cartesian coordinates,
this method focused on achieving a specific joint configura-
tion. The MoveIt2 framework computed time-parameterized
trajectories that guide each joint to its target position while
respecting joint-level velocity and acceleration constraints.
Inverse kinematics was performed using the default KDL
solver in MoveIt2, which provides joint configurations that
are locally optimal in terms of minimal displacement from
the current joint state. This ensures smooth, continuous
motion that is well-suited for real-time grasping tasks. The
ROS2 action server sent motion commands, ensuring reliable
execution. This approach is particularly useful for structured
tasks such as pick-and-place operations, where predefined
joint configurations are essential. The combined joint and
cartesian control implementation process is provided as a
pseudo-code, as shown in Algorithm 1.

Algorithm 1 Combined Pseudo Code for UR3e Joint &
Cartesian Control Using MoveIt2 in ROS2

1: Initialize the ROS2 system and create a node for
MoveIt-based control.

2: Establish an Action Client for MoveIt2’s MoveGroup
action server.

3: Wait for the /move action server to become avail-
able.

4: Define a function for Joint Control (MoveJ):
- Set target joint positions.
- Specify velocity and acceleration scaling factors.
- Create MoveIt2 joint constraints and assign them to
UR3e joints.
- Send the MoveJ command via MoveIt2 Action Client.
- Execute MoveJ with chosen velocity and acceleration.

5: Define a function for Cartesian Control (MoveL):
- Set a target position in Cartesian space (x,y,z).
- Apply end-effector constraints for straight-line motion.
- Use a bounding box or waypoints for accurate posi-
tioning.
- Send the MoveL command to the action server.
- Execute MoveL with controlled speed and accuracy.

6: Keep the ROS2 node running for continuous operation.
7: Shutdown the node upon completion.

2) Cartesian Control Using MoveIt2: Cartesian control
was implemented to enable the UR3e’s end-effector to reach
specific positions in Cartesian space (X, Y, Z) rather than
following predefined joint angles. This approach relied on the
inverse kenimatics to calculate the required joint positions
dynamically. MoveIt2 generated collision-free trajectories,
ensuring smooth and precise motion. Cartesian constraints,
such as bounding boxes and position constraints on the wrist,
were applied to maintain accuracy. This method is partic-
ularly beneficial for applications with critical end-effector
positioning, such as assembly tasks and object manipulation.

Fig. 2 demonstrates motion control of a UR3e robot
using ROS2 and MoveIt2, showcasing both joint-based and
Cartesian-based control methods. In the left section (a),
MoveJ is used for joint-space motion planning, where the
robot moves through a series of predefined joint angles for
precise articulation. In the right section (b), MoveL is applied
for Cartesian-space motion, ensuring the end-effector follows
a straight-line trajectory in 3D space. The terminal outputs
confirm the successful execution of both control commands,
with MoveJ handling overall joint positioning and MoveL
ensuring smooth linear movements. These approaches allow
flexible motion planning, depending on the task require-
ments, such as obstacle avoidance or precise end-effector
placement.

D. Schunk SVH end-effector

Integrating the Schunk SVH five-fingered hand within
the ROS2-based system followed a structured approach to
ensure reliable operation and precise control. The integration
process consisted of system setup, library installation, hard-
ware validation, and the development of custom scripts for
joint control. The software environment was configured by
installing Ubuntu with ROS2 Humble, ensuring compatibility
with the Schunk SVH ROS2 driver. Dependencies were
verified and installed to facilitate seamless communication
between ROS2 and the end effector. The Schunk SVH ROS2
driver was obtained from the official GitHub repository3. Due
to limited documentation of the SVH ROS2 driver, script

3https://github.com/SCHUNK-SE-Co-KG/schunk_svh_
ros_driver

Fig. 2. Comparison of joint-space (MoveJ) and Cartesian-space (MoveL)
motion control for a UR3e robot using ROS2 and MoveIt2
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development required debugging and adaptation of provided
examples. These custom scripts formed the foundation for
reliable communication between ROS2 and the SVH hand.
The hand was connected via USB, and communication with
the ROS2 framework was achieved without issues. The
provided ROS2 script examples were adapted to control
each joint of the Schunk SVH hand. These scripts were
used to execute test sequences, verifying the accuracy and
repeatability of joint movements. The inverse kenimatics was
applied to the end effector to accurately position the end
effector (EE) for the pick-and-place tasks. The transforma-
tion matrix represents the position and orientation of the
end effector relative to the target object, which was used
as input to the inverse kenimatics algorithm. The solution
provides the necessary position and orientation of the end
effector to ensure that the robot’s arm places it precisely at
the required location. This calculation considers the robot’s
physical constraints and ensures that the end effector reaches
the target with the correct pose without recomputing the
inverse kinematics of the entire arm.

E. Force sensors

1) Sensor Selection and Setup: A SingleTact capacitive
force sensor was selected due to its high sensitivity and
compact form factor, making it suitable for integration into
the Schunk SVH robotic hand. The sensor is small enough
to be affixed to the inner gripping surfaces of the fingers,
enabling direct measurement of contact forces during object
manipulation. The sensor was connected to its control board,
which provided signal conditioning and a digital output
accessible via an I2C interface. An Arduino Uno was used
to interface between the control board and ROS2. To ensure
reliable force measurements, the sensor was placed on the
distal phalanx of the robotic thumb, as shown in Fig. 3. This
location was chosen to ensure contact with the sensor while
grasping objects of varying shapes.

2) Serial Communication and Data Parsing: The force
sensor data was acquired using an Arduino Uno microcon-
troller, which then transmits the sensor readings at a 57600
baud rate over a serial connection. The flowchart provides
the communication process, as shown in Fig. 4. The Arduino
firmware transmits raw integer values, which are then parsed
and processed in a Python-based ROS2 node (stopper.py)
running on an Ubuntu-based control system. The node reads

Fig. 3. The placement of SingleTact force sensor on the distal phalanx of
SVH

Start System

Launch Schunk Driver:
ros2 launch

schunk svh driver

schunk svh driver.launch.py

Start Arduino Reader:
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Launch hand stopper:
ros2 launch

schunk svh driver

hand stopper launch.py

Read Serial Data
from Arduino
Threshold Exceeded?

stopper.py publishes     interrupt_signal

hand stopper ReadsCurrent Hand Pose

Publish New Pose to Hand

Manual Hand Pose Change:
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/right hand/joint trajectory

trajectory msgs/JointTrajectory { ...}

Pose Update Completed

Yes

No

Fig. 4. The flowchart of Schunk SVH communication using ROS2

sensor data in real time and triggers a hand-stop interrupt
signal once the force reaches a predetermined threshold. A
rising edge detection mechanism ensures that an interrupt
signal is only published when the sensor value exceeds a
threshold for the first time, preventing redundant commands.

3) ROS2 Node hand stopper: Once an interrupt signal is
triggered by stopper.py, the hand stopper node executes a
defined script to halt the hand’s movement immediately. This
is achieved by retrieving the most recent joint positions from
the /joint states topic and sending this as a new trajectory
command to maintain the current pose.

The node subscribes to /joint states to continuously update
an internal dictionary containing the latest joint positions of
the right hand. When an interrupt is received, the node:
• Checks if valid joint states have been recorded. If no

valid positions are available, it does not issue a stop
command to avoid unintended behavior.

• Retrieves the most recent joint positions for the right-
hand fingers.

• Constructs a JointTrajectory ROS2 message with these
positions as the target.

• Publishes this trajectory to /right hand/joint trajectory,
ensuring the hand holds its last known position.

To achieve a smooth stop, the trajectory message includes
a short time delay (e.g., 50ms) in order to prevent high
jerk. This ensures a rapid but controlled halt, preventing
excessive force while maintaining stability. The hand remains
in this position until a new command is issued, preventing
unnecessary fluctuations in grip force.

4) Performance Analysis: The system mitigated excessive
gripping force by dynamically adjusting the hand’s pose
in response to high-pressure readings. Key results include
a significant reduction in grasping force, ensuring the safe
handling of fragile objects. Additionally, real-time data pro-
cessing enabled immediate response to pressure fluctuations,
allowing for precise and timely grip adjustments. Adaptive
pose control enhanced the gripper’s efficiency and simplified
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Fig. 5. UR3e home and object-picking position in real and simulated
environments

overall control, making it more responsive to varying object
shapes and material properties.

III. RESULTS AND DISCUSSIONS

1) UR3e Motion Execution in Simulation and Real-World:
The validation of robotic grasping systems relies on ensuring
that simulated motion planning closely mirrors real-world
execution. To achieve this, the UR3e robotic arm was first
tested in a simulated environment before deploying the same
motion sequences in real-world trials. The Gazebo simulation
platform generated and refined motion trajectories, ensuring
that the robotic arm’s planned movements were accurate
and feasible. Two positions are provided to demonstrate the
alignment between simulation and reality. Fig. 5 (a) captures
the UR3e in a real-world setup at its home position, while
Fig. 5 (b) presents the corresponding simulated model in
Gazebo. Similarly, Fig. 5 (c) and (d) showcase the robot
at the object-picking position in both real and simulated
environments. The consistency in joint configurations and
movement sequences across both domains highlights the
effectiveness of the ROS2-based motion control system in
ensuring reliable robotic manipulation. During execution, the
UR3e robot follows a structured sequence, beginning from
a predefined home position before transitioning into object
interaction tasks. The home position establishes a stable
and repeatable starting point, improving trial consistency.
From this state, the robot moves towards the target object
following a planned trajectory, ensuring smooth transitions
and avoiding unintended deviations. The inverse kenimatics
solver calculates the optimal joint configurations, which are
first validated in Gazebo before real-world execution. This

step ensures that the simulated robot’s movement precisely
mirrors the physical robot’s behavior, reducing potential
errors during deployment. The comparison between sim-
ulation and real-world execution confirms the robustness
of trajectory planning and motion replication. The UR3e
successfully follows pretested motion paths, demonstrating
the reliability of ROS2-based control for adaptive robotic
applications. The seamless transition from simulation to real
execution minimizes risk, improves efficiency, and ensures
safe and repeatable grasping operations.

2) Force-Controlled Grasping and Object Handling: As
the Schunk SVH hand approaches the target, it gradually
applies force until reaching a predefined threshold, ensuring
a controlled grasp. The threshold varies based on the object’s
properties, with 5 N used for this demonstration, as shown in
Fig. 6. Excessive force application stops once the threshold
is met, and the robot moves toward the endpoint while main-
taining a stable grip. Upon reaching the target, the robotic
hand gradually releases the force, ensuring smooth object
placement. This adaptive control prevents slippage, reduces
the risk of damage, and ensures secure handling. The results
confirm the effectiveness of the force-controlled grasping
strategy, where the robotic hand dynamically adjusts its
grip to accommodate different objects. The system prevents
excessive force while maintaining stability, demonstrating
the ROS2-based closed-loop control’s reliability. The force
trajectory in Fig. 6 highlights stable gripping and controlled
release, validating its suitability for adaptive robotic manip-
ulation.

3) Sequential Adaptive Grasping Demonstration: The se-
quence illustrates the adaptive grasping process of a robotic
hand, showcasing its transition from an open resting state to
precise object manipulation, as shown in Fig. 7. The robotic
hand is initially fully open, relaxed, and ready for action.
It then spreads its fingers to maximum extension, demon-
strating flexibility before gradually moving towards a half-
closed state, signaling the beginning of a grasping motion.
As the thumb flexes inward, the hand adjusts its posture for
an impending grasp. During this transition, the robotic hand
momentarily forms expressive gestures, including the ”rock
and roll” and ”peace sign,” highlighting its dexterity and
human-like articulation. Moving beyond expressive gestures,
the hand focuses on functional grasping, positioning itself
precisely over an object in the hovering phase, preparing
for contact. It then executes a precision grip, delicately

Fig. 6. Force profile of adaptive grasping and object handling

Proceedings of the Austrian Robotics Workshop 2025

https://doi.org/10.34749/3061-0710.2025.12 77
Creative Commons Attribution
4.0 International License



D
ra

ft
Fig. 7. Sequential demonstration of robotic hand gestures and grasping

securing a small spherical object, emphasizing controlled fin-
ger movements. Finally, the robotic hand can gently handle
fragile objects, carefully lifting an apple, ensuring a secure
yet sensitive grasp. This sequence effectively conveys the
robot’s capability for expressive gestures and intricate object
manipulation, reinforcing its potential for advanced robotic
applications.

IV. CONCLUSION

This work demonstrated a ROS2-based force-controlled
grasping system, integrating the UR3e robotic arm and
Schunk SVH hand with force sensors for adaptive and pre-
cise object manipulation. A closed-loop control mechanism
was implemented, where force feedback from the sensors
dynamically regulated grip strength, ensuring secure yet
non-damaging handling of objects. The system was fully
developed within ROS2, utilizing MoveIt2 for motion plan-
ning, RTDE for real-time execution, and Gazebo simulations
for safe validation before deployment. The experimental
validation demonstrated that the robotic hand successfully
adjusted its grip in response to sensor feedback, preventing
excessive force application while maintaining a stable grasp.
Simulated trajectories in Gazebo closely mimicked real-
world execution, confirming the accuracy and reliability of
the ROS2-based motion planning and control framework.
The results highlight the effectiveness of the force-regulated
grasping strategy, allowing the system to handle fragile and
rigid objects with appropriate force levels. The force profile
analysis showed smooth transitions in gripping, transporting,
and releasing objects, validating the system’s adaptability.
The structured motion execution, starting from a home
position to object interaction, further ensured repeatability
and consistency across trials. Transferring simulation-based
planning to real-world execution minimized errors and en-
hanced efficiency, making the approach viable for various
robotic manipulation tasks.

Future work will integrate computer vision-based object
recognition to enable autonomous pick-and-place operations.
This will allow the robot to adjust force thresholds based on
detected object properties dynamically, improving adaptabil-

ity. Expanding the system’s multi-finger coordination will
enhance grasping dexterity, making it suitable for complex
industrial automation, assistive robotics, and logistics appli-
cations. The proposed approach provides a scalable and ef-
ficient solution for adaptive robotic grasping in unstructured
environments.

REFERENCES

[1] A. Bicchi and V. Kumar, “Robotic grasping and contact: A review,” in
Proceedings 2000 ICRA. Millennium conference. IEEE international
conference on robotics and automation. Symposia proceedings (Cat.
No. 00CH37065), vol. 1. IEEE, 2000, pp. 348–353.

[2] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp
synthesis—a survey,” IEEE Transactions on robotics, vol. 30, no. 2,
pp. 289–309, 2013.

[3] M. R. Cutkosky et al., “On grasp choice, grasp models, and the design
of hands for manufacturing tasks.” IEEE Transactions on robotics and
automation, vol. 5, no. 3, pp. 269–279, 1989.

[4] C. Della Santina, C. Piazza, G. Grioli, M. G. Catalano, and A. Bicchi,
“Toward dexterous manipulation with augmented adaptive synergies:
The pisa/iit softhand 2,” IEEE Transactions on Robotics, vol. 34, no. 5,
pp. 1141–1156, 2018.

[5] B. K. Farkas, P. Galambos, and K. Széll, “Advances in autonomous
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Category-Level and Open-Set Object Pose Estimation for Robotics

Peter Hönig, Matthias Hirschmanner, and Markus Vincze

Abstract— Object pose estimation enables a variety of tasks
in computer vision and robotics, including scene understanding
and robotic grasping. The complexity of a pose estimation
task depends on the unknown variables related to the target
object. While instance-level methods already excel for opaque
and Lambertian objects, category-level and open-set meth-
ods, where texture, shape, and size are partially or entirely
unknown, still struggle with these basic material properties.
Since texture is unknown in these scenarios, it cannot be used
for disambiguating object symmetries, another core challenge
of 6D object pose estimation. The complexity of estimating
6D poses with such a manifold of unknowns led to various
datasets, accuracy metrics, and algorithmic solutions. This
paper compares datasets, accuracy metrics, and algorithms for
solving 6D pose estimation on the category-level. Based on this
comparison, we analyze how to bridge category-level and open-
set object pose estimation to reach generalization and provide
actionable recommendations.

Index Terms— object pose estimation, symmetry handling,
instance level, category-level, novel object, open set

I. INTRODUCTION

Object pose estimation is necessary in robotics for tasks
such as robotic grasping [1]. If the geometry of a target
object is known, its 6D pose, defined by the rotation R and
translation t, is sufficient to locate it in a SE(3) space. This
definition is insufficient as soon as the target object geometry
is only partially known, as in the case of category-level object
pose estimation. Open-set object pose estimation is even
more complex than category-level object pose estimation
since both geometry and texture are entirely unknown. In
category-level and open-set object pose estimation, a sole
6D pose leaves unknowns to describe the object for tasks
such as grasping. In these cases, additional information is
necessary, such as a 7D pose (R, t, and s for scale), a 9D
pose (R, t, and s, a 3D vector with x,y,z dimensions of the
aligned bounding box), or a 6D pose in combination with
a shape reconstruction. The differences between instance-
level, category-level, and open-set object pose estimation are
illustrated in Fig. 1. The three circles in Fig. 1 represent
the prior knowledge available to a pose estimation algorithm
during a training or onboarding stage. During the inference
stage existing category-level algorithms [2], [3], [4] do not
require a 3D object model. However, in open-set object
pose estimation, recent methods do require an object model
during inference [5], or they reconstruct an object mesh
from multiview RGB images during an onbording stage [6].
These reconstructions however are prone to reconstruction
noise and the full object surface needs to be visible in order

All authors are with the Automation and Control Institute, Faculty
of Electrical Engineering, TU Wien, 1040 Vienna, Austria {hoenig,
hirschmanner, vincze}@acin.ac.tuwien.at

Fig. 1. Comparison of instance-level, category-level, and open-set object
pose estimation. The complexity of the pose estimation task is increasing
from left (instance-level) to right (open-set) due to the number of unknowns.

for a full reconstruction. This does not allow one-shot pose
estimation, where only a single frame is available.

In order to make 3D object models during inference ob-
solete, knowledge has to be induced during a training stage.
Consequently, canonicalization is required. Canonicalization
describes the centering and alignment of objects canonically
in the SE(3) space. To address the issues of texture and
geometry variation, a color encoding of object geometry is
proposed in [2], namely the Normalized Object Coordinate
Space (NOCS). NOCS describes a dimensionless 1× 1× 1
cube, where the x,y, and z coordinates of canonically oriented
objects are mapped to RGB values. This geometrical color
encoding is used in other category-level and open-set object
pose estimation solutions [7], [8], [9], [10], [11], [3], [12],
becoming the de-facto standard intermediate representation
in the field.

Besides dealing with texture and shape variations, prop-
erly disambiguating object symmetries remains challenging
in category-level object pose estimation. Not accounting
for object symmetries may prohibit optimization algorithms
from converging correctly. While NOCS does disambiguate
geometrically symmetric objects with distinct textures, it
does not account for textureless objects and pointcloud-
only input data. While instance-level object pose estimation
uses distinct textures to disambiguate geometric symmetries,
category-level object pose estimation deals with variation
in object texture. This texture variety is handled differently
during training of neural networks for category-level object
pose estimation [11], [3].

This comparative study analyzes category-level object
pose estimation papers [2], [7], [8], [13], [9], [10], [4], [14],
[11], [3], [15], [12] focusing on symmetry handling and how
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Fig. 2. Comparing Input Modalities. A mug is rotated 360◦ around the y-axis to showcase how a key feature (the handle) is self-occluded in a 90◦
range, clearly exposed in a 180◦ range, and obscured due to the uniform texture in a 90◦ range. The various input modalities are shown to highlight the
mug handle stronger (depth, normals) or weaker (RGB, NOCS).

to bridge category-level and open-set object pose estimation.
We limit our investigation to algorithms predicting the object
pose from a single frame, with no 3D object model available
during inference. We only consider algorithms which are
evaluated either on the CAMERA [2] or REAL275 [2]
dataset. Algorithms that use stereo vision [16] or consecutive
frames [17] or are solely evaluated on other datasets are
not included in this study. While previous works summarize
and review the state of the art in object pose estimation in
general [1], [18], [19], we explicitly focus on category-level
object pose estimation and how to bridge this technique to the
open-set domain, without requiring 3D object models during
the inference step. Our contributions can be summarized as
follows:
• A concise review of the state of the art in category-

level object pose estimation with an emphasis on input
modalities, network architectures, 6D pose solvers, and
rotational symmetry handling.

• Actionable recommendations for tailoring future
category-level object pose estimation methods for
generalization beyond known categories to bridge to
the open-set domain.

The following section starts by discussing types of input
modalities. We will discuss how input modalities influence
symmetry disambiguation. The subsequent section reviews
network architectures. In this section we will discuss how
network architectures can handle symmetric objects differ-
ently and how network types relate to model performances.
Next, we discuss types symmetry handling, their advantages
and limitations. We continue with a section about 6D pose
solvers, discussing deterministic and learned variants and we
elaborate on pose estimation performance metrics used for
comparison. We conclude with experiments and results, dis-
cussing current performances of category-level object pose
estimation algorithms and give actionable recommendations
for potential improvements based on the findings during our
literature research. The papers are compared in Table I.

II. INPUT MODALITIES

The choice of input modalities influences how symmetries
are resolved [1]. For specific object geometries, RGB-only

leads to ambiguous views, where key features are not clearly
exposed, e.g., when the handle of a textureless mug directly
points toward the camera. This phenomenon is depicted
in Fig. 2. Depth input provides complementary geometric
cues, which resolves such ambiguities. Furthermore, since
texture and shape are varying in category-level object pose
estimation, depth or normals input provide actual geometric
surface information. Since category-level object pose esti-
mation algorithms do not access 3D object meshes during
the inference stage, algorithms using depth or normals are
in favor. In robotic applications, depth data is abundant [1],
[20] making algorithms that use depth modality the preferred
option.

The papers [2], [7], [8], [9], [3], [15], [12] use RGB input
for their algorithms, as listed in Table I. [2], [7] use RGB
for establishing 2D-3D correspondences and depth for trans-
forming normalized 3D to metric 3D coordinates. [9], [15]
use RGB and depth for predicting 2D-3D correspondences
and depth again for 6D pose solving between normalized
and metric 3D. [13], [10], [4], [14], [11] rely on depth only
for pose estimation and use RGB for the object detection
stage to estimate region proposals. [8], [12] use solely RGB
data, while [12] extracts DINOv2 features from RGB before
processing further. [3] use RGB, depth, and DINO features.

III. NETWORK ARCHITECTURES

Network architectures vary between the selected papers.
As Table I indicates, recent advancements in computer vision
research are reflected in the development of novel category-
level object pose estimation methods. While traditional CNN
architectures dominated from 2019 to 2021, Graph Con-
volutional Networks (GCNs) [25] were adopted in 2022.
[3] use diffusion in 2024, and [11], [12] use transformer
models in 2023 and 2024. When comparing pose estimation
accuracy in the subsequent chapters, one must consider that
GCNs, transformers, and diffusion models need extended
training and inference times compared to CNNs due to their
different network characteristics. This is due to transformers
processing the input in multiple heads [26], diffusion models
requiring multiple denoising steps [27] and GCNs dealing
with not only 2D but 3D data.
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TABLE I
COMPARISON OF CATEGORY-LEVEL OBJECT POSE ESTIMATION PAPERS. PAPERS PRESENTING ALGORITHMS PREDICTING CATEGORY-LEVEL

OBJECT POSE FROM SINGLE FRAMES.

Year Paper Input NOCS Symmetry Handling Network 6D Pose SolverRGB Depth

2019 Wang et al. [2] ✓ ✓ ✓ sym. transform loss [21] Mask R-CNN like Umeyama [22]
2020 Tian et al. [7] ✓ ✓ ✓ sym. transform loss [21] Encoder-decoder CNN Umeyama [22]
2021 Lee et al. [8] ✓ × ✓ none Encoder-decoder CNN Umeyama [22]
2021 Chen et al. [13] × ✓ × sym. transform loss [21] Encoder-decoder CNN Direct regression
2021 Wang et al. [9] ✓ ✓ ✓ none Recurrent reconstruction CNN Umeyama [22]
2022 Zhang et al. [10] × ✓ ✓ sym. transform loss [21] 3D GCN Direct regression
2023 Wan et al. [4] × ✓ (✓) none 3D GCN Anisotropic scaling
2023 Wang et al. [14] × ✓ ✓ none CNNs + MLPs Direct regression
2023 Zou et al. [11] × ✓ ✓ sym. transform loss [21] Transformer Umeyama [22]
2023 Remus et al. [23] ✓ ✓ × none Encoder-decoder CNN Direct regression
2024 Ikeda et al. [3] ✓ ✓ ✓ probabilistic Diffusion model TEASER++ [24]
2024 Fan et al. [15] ✓ ✓ ✓ none Encoder-decoder CNN Umeyama [22]
2024 Krishnan et al. [12] ✓ × ✓ none Transformer Direct regression

IV. 6D POSE SOLVER

None of the selected papers directly regress the 6D,
7D, or 9D pose from the input without intermediate steps.
Regressing object poses without intermediate representations
was shown to be inefficient [28]. All selected papers first
predict an intermediate representation and solve the 6D pose
subsequently. The papers [2], [7], [8], [9], [10], [11], [14],
[3], [12] use NOCS as intermediate representation while [4]
use an adapted version of NOCS, namely the Semantically-
aware Object Coordinate Space (SOCS), a representation
similar to NOCS with additional parameters to highlight
semantically meaningful regions around keypoints. [13] per-
form pointcloud reconstruction and regress R, t, and s
directly from latent features of the encoder-decoder network.

For networks that estimate the NOCS (or SOCS) point-
cloud PN in normalized space N, a final step for transforming
PN to the metric space M is needed to acquire PM . This
step involves solving the equation: PM = s ·R · PN + tM ,
where R, tM , and s are unknown. The authors of [2], [7],
[8], [9], [11], [15] use the Umeyama algorithm to solve for
R, tM , and s, and use metric depth data from a sensor to
acquire PM . [8] uses a Metric Scale Object Shape (MSOS)
branch to estimate a metric 3D model parallel to predicting
IN . Therefore, they predict both IN and PM without using
depth data from a sensor. The independence from depth
comes with the drawback of increased runtime and limited
performance since the MSOS branch can only interpolate
between object models encountered during training. Objects
with measurements beyond the ones seen in the training data
(e.g., a realistic model car, vastly smaller than an actual car
but with the same semantic properties) will lead to wrong
results. [3] use the TEASER++ algorithm to solve for R,
tM , and s, and use depth data from a sensor to acquire PM .
[12] directly regress R from IN , and regress tM and s after
the Dense Prediction Transformer (DPT) backbone [29]. [12]
predict NOCS from a full scene with full semantic context,
which helps to learn metric object size without depth data.
Still, object sizes outside of the distribution seen during
training will be challenging for such a model, similar to [8].

In regards to generalization, the deterministic algorithms
Umeyama and TEASER++ do have the advantage of object
category agnosticity. While [12] performs direct regression
for 6D pose solving, added depth and a deterministic pose
solver would most likely result in improved performance.

V. ROTATIONAL SYMMETRY HANDLING

While the pose of the textured object is distinct in all
four views, the pose of the textureless object is not. The
selected papers of this comparative study handle symmetry
differently. Besides no explicit symmetry handling, three
major symmetry handling techniques are used.

A. No explicit symmetry handling

[8], [9], [4], [14], [15], [12] do not mention any implicit
nor explicit symmetry handling technique. Pose estimation
performance is reported for the whole dataset, not single
object categories.

B. Orthogonal vectors

[13] do not predict R as a 3x3 matrix but instead use
two decoders that estimate two perpendicular vectors to
describe R. For objects with continuous symmetries around
one axis the loss weight for one of the two perpendicular
vectors is set to 0. This eliminates the constraint of predicting
a fully defined pose, but is only applicable to continuous
symmetries. Since this form of symmetry handling is explicit,
symmetry types have to be manually annotated. For han-
dling discrete symmetries [13] use the symmetry transform
loss [21] described in the following section.

C. Symmetric transform loss

To handle discrete and continous symmetries [2], [7],
[13], [11], [10] use the symmetric transform loss described
by [21]. The symmetric transform loss Lsym can be defined
as:

Lsym = min
R∈S

L
(
Pest,R ·Pgt

)
,

where:
• Pest is the estimated NOCS point cloud.
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Fig. 3. Exemplary images of the CAMERA and REAL275 datasets.
While the CAMERA dataset features rendered object instances on real
backgrounds, the REAL275 dataset solely features real image data.

• Pgt is the ground truth NOCS point cloud.
• S = {R1,R2, . . . ,Rn} is the set of all rotational sym-

metry transformations.
• L (P1,P2) is the loss function measuring the distance

between two point clouds.

The symmetry transform loss requires handcrafted anno-
tations of symmetrical poses for all objects in the training
set. Annotation requires the symmetries to be discrete (e.g.,
a rotational symmetry has to be divided into n discrete
symmetries around that axis). Furthermore, since real-life
objects are either reconstructed or modeled with CAD, an
arbitrary choice of symmetry is necessary. Reconstructed
meshes are never fully symmetric due to reconstruction
noise, and CAD parts may break symmetry only by a minor
part of the object in relation to the full size. While these
alterations technically break the symmetry, defining them
as symmetric may still lead to better convergence when
predicting NOCS.

D. Probabilistic symmetry handling

[3] presents an implicit symmetry handling approach for
learning pose probabilities by sampling an additional noise
input to the diffusion model. Compared to the other papers,
they sample multiple noise inputs for each training sample
drawn from the dataloader. Consequently, each instance of
the training set has newly generated noise samples in each
epoch during training. After predicting the NOCS the inlier
rate of the TEASER++ pointcloud registration result is used
as an additional loss for backpropagation. An example of
this noise sampling approach is illustrated in Fig. 4. The
advantage of this type of symmetry handling is that no
discrete symmetry annotations are necessary.

VI. EXPERIMENTS

The selected papers report results on the REAL275 and
Context-Aware MixEd ReAlity (CAMERA) datasets. Both
datasets were introduced in [2]. Exemplary images are shown

Fig. 4. Illustration of the probabilistic loss used by DiffusionNOCS. For
each sample around the symmetry axis r,g,b values from a uniform Gaussian
distribution are sampled. This introduces an adversarial character to the
NOCS prediction, prohibiting the network from converging to local minima
that do not capture the full symmetry of the object. By introducing this
adverarial effect the network learns the symmetry of the object implicitly.

in Fig. 3. The CAMERA dataset consists of 300k syntheti-
cally rendered object images pasted onto real backgrounds.
The REAL275 dataset contains 2750 test images across 18
different scenes. Both datasets contain the same object in-
stances of 6 different object categories (bottle, bowl, camera,
can, laptop, and mug), consisting of non-rotation-symmetric
(camera, laptop, mug) and continuously symmetric (bottle,
bowl, can) objects. Since the CAMERA dataset also uses
synthetic object renderings for the test data, its relevance
for evaluating algorithms for real-world pose estimation
capabilities is questionable. If the test data is synthetic, the
performance of algorithms on the real-world domain can not
be evaluated.

Regarding accuracy metrics, the authors of [2], [7], [8],
[12] report the mean Average Precision (mAP) of 3D25,
3D50, and 3D75 scores, which represent the Intersection
over Union (IoU) between ground truth and estimated 3D
bounding box at 25%, 50%, and 75% respectively. The
authors of [2], [7], [8], [3] papers also report the mAP below
error thresholds of R and t. The specific thresholds in the
papers vary. Therefore, the most common ones are selected
(5◦5cm, 10◦5cm, and 10◦10cm).

VII. RESULTS

Table II shows the results presented in the selected papers
on the CAMERA and REAL275 datasets. Out of all, the
two papers that use solely RGB data, [8], [12] perform
worst. This confirms the hypothesis that regressing object
size and translation without depth data during runtime is
challenging. While [8] report 75.4% of 3D bounding boxes
within an IoU of 25%, the numbers drop to 32.4% at an
IoU of 50% and 5.1% at an IoU of 75%. An opposite
trend can be observed for the methods using solely depth.
The best performing methods for 3D bounding box and
R, t prediction rely on depth only. Especially [4], [14]
appear to be the best performing methods on the REAL275
dataset for predicting R, t. [4] is slightly in the lead with
56.0% mAP 5◦5cm and 82.0% 10◦5cm. [14] is close with
54.7% mAP 5◦5cm and 81.6% 10◦5cm. Both [4], [14] do
not perform explicit symmetry handling. While performance
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TABLE II
EVALUATION ON THE CAMERA AND REAL275 DATASETS. MAP SCORES FOR 3D BOUNDING BOXES, R AND t. ”-” INDICATES SCORES NOT

REPORTED IN THE RESPECTIVE PAPERS. BEST PERFORMANCE IN BOLD, WORST PERFORMANCE / RGB-ONLY UNDERLINED
† USE SYNTHETICALLY RENDERED TRAINING DATA, EVALUATE ON REAL TEST DATA.

Dataset Year Paper Input Priors mAP
3D25 3D50 3D75 5◦5cm 10◦5cm 10◦10cm

CAMERA 2019 Wang et al. [2] RGB-D end-to-end 91.1 83.9 69.5 40.9 64.6 65.1
2020 Tian et al. [7] RGB-D Mask R-CNN [30] - 93.2 83.1 59.0 81.5 -
2021 Lee et al. [8] RGB Mask R-CNN [30] 75.4 32.4 5.1 - - 19.2
2021 Chen et al. [13] D YOLOv3 [31] - - 85.2 62.0 - -
2022 Wang et al. [9] RGB-D Mask R-CNN [30] - 93.8 88.0 76.4 87.7 -
2023 Zhang et al. [10] D Mask R-CNN [30] - - 86.8 75.5 87.4 -
2023 Wan et al. [4] D Mask R-CNN [30] - - - - - -
2023 Wang et al. [14] D Mask R-CNN [30] - 92.3 88.6 83.9 90.5 -
2023 Zou et al. [11] D Mask R-CNN [30] - 92.5 86.9 76.5 88.7 89.9
2024 Ikeda et al. [3] RGB-D Mask R-CNN [30] - - - - - -
2024 Fan et al. [15] RGB-D Mask R-CNN [30] - 93.7 89.6 75.1 89.5 -
2024 Krishnan et al. [12] RGB Mask R-CNN [30] - - - - - -

REAL275 2019 Wang et al. [2] RGB-D end-to-end 84.9 80.5 30.1 10.0 26.7 26.7
2020 Tian et al. [7] RGB-D Mask R-CNN [30] - 77.3 53.2 21.4 54.1 -
2021 Lee et al. [8] RGB Mask R-CNN [30] 62.0 23.4 3.0 - - 9.6
2021 Chen et al. [13] D YOLOv3 [31] 95.1 92.2 63.5 28.2 60.8 64.6
2021 Wang et al. [9] RGB-D Mask R-CNN [30] - 79.3 55.9 34.3 60.8 -
2022 Zhang et al. [10] D Mask R-CNN [30] 84.0 81.1 52.0 33.9 69.1 71.0
2023 Wan et al. [4] D Mask R-CNN [30] - 82.0 75.0 56.0 82.0 -
2023 Wang et al. [14] D Mask R-CNN [30] - 82.9 76.0 54.7 81.6 -
2023 Zou et al. [11] D Mask R-CNN [30] - 82.0 70.4 53.8 77.7 79.8
2024 Ikeda et al. [3]† RGB-D Mask R-CNN [30] - - - 35.0 66.6 -
2024 Fan et al. [15] RGB-D Mask R-CNN [30] - 82.3 66.6 41.3 67.0 -
2024 Krishnan et al. [12] RGB Mask R-CNN [30] 43.5 10.6 - - - -

metrics for individual object categories are missing in the
papers, it appears that the 3D GCN of [4] and the CNNs +
MLP network of [14] handle the symmetries of objects well
enough. Both papers also use learning-based 6D pose solv-
ing, namely anisotropic scaling [4] and direct regression [14].
This sophisticated 6D pose solving techniques could be the
reason for the superior performances. On the other hand,
[11] comes close to the results of [4], [14] while employing
the deterministic Umeyama method [22] for rigid point cloud
alignment. The probabilistic loss of [3] does not lead to
improved performance. However, since the authors of [3] use
synthetic renderings for training and real data for evaluation,
a fair comparison is not possible.

When comparing pose estimation performance, the source
of object detection priors have to be taken into account.
While [7], [8], [9], [10], [4], [14], [11], [3], [15], [12]
use pre-computed Mask R-CNN location priors to ensure
fair comparison, [2] use the location priors of their end-to-
end trainable network and [13] use YOLOv3 for location
priors. This results in superior results for 3D bounding box
estimation on REAL275 by [13].

Overall, results are better on the CAMERA dataset com-
pared to the REAL275 dataset. This can likely be attributed
to the stronger domain shift between the training and test data
of REAL275. Not only objects but also scenes are different,
including other lighting, shadow and reflection. The domain
shift for pose estimation only consists of object difference
between training and test dataset.

Lastly, a clear correlation between improved performance
and newer network architectures such as transformers or

diffusion models cannot be observed.

VIII. CONCLUSION

This paper compares category-level object pose estima-
tion methods which are evaluated on the CAMERA and
REAL275 datasets. The methods differ regarding input
modalities, symmetry handling, network types, and 6D pose
solver algorithms. A comprehensive comparison was con-
ducted, focusing on symmetry handling and its potential
impact on model performance. After reviewing input modal-
ities, network architectures, 6D pose solvers, symmetry han-
dling, experiments, and results, the following conclusions are
drawn:

• Omitting depth as done by [8], [12] drastically reduces
performance as compared to RGB and RGB-D based
methods.

• While the absence of depth data worsens results, the
depth-only methods perform best overall, indicating that
depth data is crucial for improving category-level object
pose estimation.

• The two best performing methods use no explicit sym-
metry handling, suggesting that implicit symmetry han-
dling is not mandatory if model architecture is allowing
for it.

• While methods with learning-based 6D pose solvers
excel regarding pose estimation performance, papers
using deterministic methods such as Umeyama [22]
achieve results almost on par. This is crucial since bridg-
ing category-level and open-set pose estimation benefits
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from deterministic 3D geometry-agnostic algorithms for
6D pose solving.

• The usage of different 2D object detection priors hinders
a fair comparison, since improvement cannot clearly
attributed to either detection or pose estimation.

Future research should build upon this comparative paper
by analyzing the individual aspects of category-level object
pose estimation further.
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Simulation-Driven Optimization of Stanley Controller Gains for
Enhanced Tracking in Autonomous Navigation Robots

Héctor Pérez-Villeda1, Clemens Mühlbacher1, Konstantin Mautner-Lassnig1

Abstract— Fine-tuning controllers for robotic systems is a
tedious process that often requires significant time for conver-
gence and can lead to mechanical component wear. Having an
accurate simulation of the robotic system and its environment
can help reduce this effort and accelerate the tuning process.

This work presents an optimization-based approach that
leverages simulations to optimize control parameters before
transferring them to a real mobile robot, significantly reducing
fine-tuning effort and the need for extensive real-world testing.
The method follows a two-stage process: first, calibrating the
simulator to closely replicate the mobile robot’s trajectory, and
second, using the refined simulation to optimize the Stanley
controller’s gains. By aligning the simulator’s behavior with
real-world performance, we ensure that control tuning is both
effective and time-efficient, allowing optimized parameters to
be directly applied to the real system.

The methodology is validated through experiments compar-
ing simulated and real-world trajectories, demonstrating that
the optimized gains improve tracking accuracy. Additionally, we
provide an estimation of the achieved improvements, including
tracking error reduction, time savings, and energy consumption
minimized by our approach, highlighting its efficiency in the
fine-tuning process.

Index Terms— Autonomous navigation, Stanley controller,
simulator optimization, control tuning, simulation-to-reality
transfer, parameter optimization.

I. INTRODUCTION

Autonomous navigation is a critical capability for mobile
robots operating in dynamic environments. A key challenge
in this domain is ensuring accurate trajectory tracking, which
is essential for applications such as autonomous vehicles [6],
warehouse automation [9], and field robotics [5]. Stanley
controller is widely used due to its effectiveness in minimiz-
ing lateral errors and maintaining stability during navigation
[11]. However, achieving optimal tracking performance re-
quires careful tuning of the controller’s gains, a process that
is often time-consuming and tedious when performed directly
on a physical robot.

To address this challenge, we propose a simulation-driven
optimization framework that enhances the efficiency of Stan-
ley controller gain tuning. Instead of manually adjusting
control parameters in real-world experiments, our approach
leverages automated hyperparameter optimization techniques
to systematically refine both the simulator parameters and

* This project is funded by the Austrian Research Promotion Agency
(FFG). www.ffg.at, under the project: AVASI (Autonomous Vehicle
Advanced Simulation)

1ARTI — AI software solutions for au-
tonomous robots, Website:https://arti-robots.
com, Emails: h.villeda@arti-robots.com,
c.muehlbacher@arti-robots.com,
k.ml@arti-robots.com

Control parameters transfer
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Fig. 1. On the left: CHASI, the ARTI robotic platform used in the
experiments. Our method aims to calibrate the simulation environment to
accurately replicate the real-world robot behavior. Once calibrated, control
parameters are fine-tuned in simulation before transferring the optimized
parameters to the real robot. This approach accelerates the tuning process
while minimizing mechanical wear on the physical system.

controller gains. Specifically, we employ Optuna [2], an
efficient framework for hyperparameter search, to explore
optimal configurations while minimizing trajectory tracking
errors. By optimizing in simulation before transferring the
learned parameters to the real system, our method reduces the
need for extensive physical testing while maintaining real-
world applicability [7], [8], [14].

The remainder of this paper is structured as follows: Sec-
tion 2 describes the robot model used in this work. Section
3 defines the environment and the mathematical framework
used throughout the paper. Section 4 details the proposed
methodology, while Section 5 presents the experimental
results along with their analysis. Finally, Section 6 concludes
the paper and discusses directions for future work.

II. RELATED WORK

Accurate control tuning for mobile robots is a critical
challenge, particularly in scenarios where real-world testing
is expensive, risky, or time-consuming. A common strategy
to address these challenges involves the use of high-fidelity
simulators to replicate the behavior of robotic systems.
However, discrepancies between simulation and actual per-
formance, commonly referred to as the sim-to-real gap, can
significantly reduce the reliability of control policies if the
simulator is not properly calibrated.

Sim-to-real transfer techniques have received increasing
attention in robotics. Domain randomization [13] and system
identification methods [10] are often employed to bridge
the simulation-reality gap by either increasing robustness
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to environmental variation or aligning simulator dynamics
with the real system. DROPO [12] focus on estimating
domain randomization ranges for improving transferability
of optimized policies. These methods often assume that the
simulation environment and its physical model provides an
adequate representation of the real-world system.

Hybrid learning strategies have been proposed to in-
corporate real-world data for improving simulation fidelity
and learning efficiency [4]. Similarly, [1] evaluate var-
ious simulators, revealing limitations in modeling elastic
impacts and complex motions, even with contact parameter
tuning—highlighting the need for more accurate physical
calibration.

While these works typically address either simulation
calibration or control optimization in isolation, our method
introduces an integrated three-stage approach: first refining
simulation parameters to match real-world robot behavior,
then optimizing control gains within the calibrated envi-
ronment and finally transfer the learned parameter to the
real robot. This ensures that the resulting policies are both
physically grounded and readily transferable, minimizing
reliance on real-world trials.

III. ROBOT MODEL

A. Ackerman Kinematic Model

The Ackerman kinematic model is widely used to de-
scribe the motion of wheeled vehicles with nonholonomic
constraints [3]. It assumes no lateral slip and is based on the
geometry of steering. The vehicle’s motion is governed by
the following equations:

ẋ = vcos(θ),
ẏ = vsin(θ),

θ̇ =
v
L

tan(δ ).
(1)

where x and y represent the vehicle’s position coordinates,
θ is the heading angle, v denotes the velocity, L is the
wheelbase length, and δ corresponds to the steering angle.

B. ARTI-Controller

The ARTI-Controller is based on the Stanley method
[11], a widely used approach for autonomous vehicle path
following that minimizes cross-track and heading errors to
ensure smooth trajectory convergence.

The steering control law is defined as:

δv = θe + tan−1
(

ke f a

v+ vmin

)
(2)

where δv is the steering output, θe = θ −θp is the heading
error, and e f a is the cross-track error from the front axle to
the closest path point (cx,cy). The gain k adjusts the influence
of the cross-track error, while v is the vehicle speed, and vmin
ensures stability at low speeds.

To enhance robustness and adaptability at different speeds,
the ARTI-Controller applies gain scheduling for k across
velocity ranges, enabling dynamic tuning of the control
response. The gain values are summarized in Table III-B. The

Path

Fig. 2. Diagram illustrating the variables used by the Stanley controller to
compute the control output

geometric relationship of the control variables is illustrated
in Figure 2.

TABLE I
STANLEY CONTROL GAINS FOR DIFFERENT VELOCITY RANGES.

Velocity 0≤ v < 0.5 0.5≤ v < 0.8 0.8≤ v≤ 1.0
k k1 k2 k3

IV. ENVIRONMENT DEFINITION

A. Real-World (Physical) System Representation

The real system is modeled as a discrete-time nonlinear
state-space system:

xr
i+1 = f r(xr

i ,u
r
i ,ααα

r,Td) (3)

where xr
i = [xr

i ,y
r
i ,θ r

i ]
T represents the robot’s position and

orientation at time step i, and ur
i = [δ r

vi
,vr

i ]
T denotes the

steering and linear velocity control inputs. The dynamics
function f r(·) is defined according to the Ackermann model
in Equation 1.

The closed-loop controller is parameterized by αααr =
{kr

1,k
r
2,k

r
3}, which affect the robot’s tracking behavior. The

desired trajectory is defined as:

Td =
{

xd
i = [cxi ,cyi ]

T | i = 1, . . . ,Nd
}

(4)

where xd
i are the target waypoints in Cartesian coordinates.

A sampled trajectory from the real system consists of a
discrete sequence of the robot’s states, defined as:

Tr
αααr = {xr

i | i = 1, . . . ,Nr} (5)

where each xr
i is a recorded state of the robot under the

controller parameters αααr, and Nr is the number of sampled
steps.

B. Simulated System Representation

The simulated system is represented as:

xs
i+1 = f s(xs

i ,u
s
i ,ααα

s,βββ ,Td) (6)

where xs
i = [xs

i ,y
s
i ,θ s

i ]
T is the simulated state, and us

i =
[δ s

vi
,vs

i ]
T is the control input, with δ s

vi
as the steering angle
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and vs
i as the linear velocity. The parameters αααs = {ks

1,k
s
2,k

s
3}

configure the Stanley controller in simulation, while βββ =
{β1,β2,β3,β4,β5} defines configurable simulation parame-
ters defined in the Table II used to more accurately capture
the interaction between the robot and the real system. The
function f s(·) approximates the simulated system’s transition
dynamics.

A simulated trajectory consists of a sequence of discrete
states:

Ts
αααs,βββ = {xs

i | i = 1, . . . ,Ns} (7)

where Ns is the number of recorded samples. The trajectory
Ts depends on the control parameters in the simulation
environment αααs and simulation parameters βββ .

C. System Discrepancy Measure

To quantify the difference between two trajectories T1 =
[T1x ,T1y ] and T2 = [T2x ,T2y ], we define a cost function that
integrates well-known metrics: Mean Square Error (MSE)
and Dynamic Time Warping (DTW) .

L (T1,T2) = MSE
(
DTW(T1x ,T2x) ,DTW

(
T1y ,T2y

))
(8)

DTW first aligns the x- and y-coordinate sequences to
account for temporal variations; MSE then measures the de-
viation between the aligned pairs, yielding a robust similarity
metric even under phase shifts or speed differences.

D. Problem Definition

Our objective is to minimize the tracking error between the
real trajectory (5) of the physical robot (3) and the desired
trajectory (4). This is achieved by fine-tuning the control
parameters ααα . We formulate the optimization problem as:

ααα∗ = argmin
ααα

L (Td ,Tr
αααr) (9)

where L (Td ,Tr
αααr) represents the discrepancy between the

desired trajectory Td and the real trajectory Tr
αααr .

To achieve this, we first use a simulator to capture the
robot’s initial real-world behavior through a calibration pro-
cess. Then, we fine-tune the controller gains in the calibrated
simulation before transferring these optimized gains to the
real system.

V. METHOD

This section provides a detailed description of our method.
Figure 3 illustrates the overall process, while Table 1 sum-
marizes the key steps for clarity. Our approach is divided
into four main steps:

1) Real-World Data Collection: Gather the robot’s tra-
jectory Tr

αααr
0

following the desired trajectory Td using
the initial control parameters αααr

0.
2) Simulation Calibration: The goal of this step is to

ensure that the robot’s simulated trajectory Td closely
resembles the real trajectory Tr

αααr
0

obtained using the
initial control parameters. To achieve this, we trans-
fer the initial control parameter values from the real

TABLE II
NOTATION AND NAME OF VARIABLES

Symbol Description
Td Desired trajectory
Tr

αααr Real trajectory from the robot with control parameters αααr

Ts
αααs ,βββ Simulated trajectory with parameters αααs,βββ

αααr , αααs Control parameters (real-world & sim.)
αααr

0, αααs
0 Initial control parameters (real-world & sim.)

ααα∗ Optimized control parameters
βββ Set of simulation parameters
βββ 0 Initial simulation parameters
βββ ∗ Optimized simulation parameters
β1 Delay velocity
β2 Delay steering
β3 Max. allowed acceleration
β4 Max. allowed angular velocity
β5 Angular acceleration

robot to the simulation, i.e., αααs
0← αααr

0. Afterwards, we
calibrate the simulation to ensure that the simulated
robot’s behavior closely approximates the real-world
system, i.e., xs

i ≈ xr
i by fixing the values of the initial

control parameters αααs
0 and optimizing the set of config-

urable simulation parameters βββ through the following
minimization problem:

βββ ∗ = argmin
βββ

L (Tr
αααr

0
,Ts

αααs
0,βββ

)

⇒ xs
i ≈ xr

i , ∀i ∈ {1, . . . ,N}
(10)

The function L (Tr
αααr

0
,Ts

αααs
0,βββ

), introduced in (8), quan-
tifies the discrepancy between the simulated and real
trajectories.
This process involves executing the path-following task
in simulation using the same desired trajectory Td

from (4) and iteratively adjusting βββ until the optimal
parameters βββ ∗ are obtained.

3) Fine-tuning of control parameters: Once the simu-
lated robot accurately replicates the real robot’s behav-
ior, the objective of this step is to optimize the control
parameters to ensure the simulated robot closely fol-
lows the desired trajectory Td . To achieve this, after
calibrating the simulation state xs

i , we fix the optimal
simulation parameters βββ ∗ obtained in the previous
step and fine-tune the control gains αααs by solving the
following minimization problem:

ααα∗ = argmin
αααs

L
(

Td ,Ts
αααs,βββ ∗

)
, (11)

This optimization process improves tracking accuracy,
ensuring that the simulated trajectory Ts closely aligns
with the desired trajectory Td .

4) Transfer to Real System: After optimizing the con-
trol parameters to ensure the simulated robot closely
follows the desired trajectory, we transfer the tuned
parameters αααr ← ααα∗ to the physical system (3) and
validate their performance under real-world conditions.
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Fig. 3. Pipeline of our method: The process begins by collecting the real robot’s trajectory while following the desired path. This trajectory is then
used to calibrate the simulation environment iteratively until the simulated behavior closely matches the real-world performance. Once calibrated, control
parameters are fine-tuned in simulation and subsequently transferred to the real robot to enhance its tracking accuracy.

Algorithm 1 Simulation-Based Control Gain Optimization

1: Input: Desired trajectory Td

2: Output: Optimized control parameters ααα∗
3: Step 1: Real-World Data Collection
4: Tr

αααr = {xr
i | i = 1, . . . ,Nr}

5: Step 2: Simulation Calibration xs′
i ≈ xr

i
6: Initialize αααs

0← αααr
0; βββ ← βββ 0 ▷ Load simulation default

values
7: while L (Tr

αααr ,Ts
αααs,βββ )≥ ε do

8: Ts
αααs,βββ = {xs

i | i = 1, . . . ,Ns}
9: βββ = βββ −η∇βββ L (Tr

αααr ,Ts
αααs,βββ )

10: end while
11: Return βββ ∗← βββ ▷ Final optimized parameters
12: Step 3: Fine-Tuning of Control Parameters in sim.
13: βββ ← βββ ∗ ▷ Load optimized simulation parameters
14: while L (Td ,Ts

αααs,βββ )≥ ε do
15: Ts

αααs,βββ = {xs
i | i = 1, . . . ,Ns}

16: αααs = αααs−η∇αααsL (Td ,Ts
αααs,βββ )

17: end while
18: Return ααα∗← αααs ▷ Final optimized control parameters
19: Step 4: Control parameters transfer
20: αααr← ααα∗

VI. EXPERIMENTS AND RESULTS

We evaluated our approach using the CHASI robotic
platform, a mobile robot with an Ackermann steering con-
figuration (0.8 m × 0.6 m × 0.45 m). Simulations were
conducted in the Stage simulator, a lightweight 2D tool
that efficiently models sensor data and robot motion. Our
navigation stack was fully integrated into Stage, enabling
controlled and repeatable testing.

For real-world validation, we collected trajectory data

in a 14 m × 2 m test area and compared it with the
simulated results. Simulation and control parameter tuning
were optimized using Optuna, a widely used hyperparameter
optimization framework.

A. Real-World Collected Data

For this experiment, we used the desired trajectory illus-
trated in Figure 4 (a), denoted as Td . This trajectory consists
of both straight-line segments and two sharp curves, designed
to assess and optimize the robot’s performance in both linear
and curved path-following scenarios.

The actual trajectory followed by the robot, denoted as
Tr

αααr
0

using the initial default control parameters αααr
0, is also

shown in Figure 4 (a). It can be observed that the robot
successfully tracks the straight-line segments of the trajec-
tory. However, when navigating the curved sections, the robot
struggles to maintain accurate path tracking, exhibiting a no-
ticeable error gap between the desired and actual trajectories.

B. Simulation calibration

This step aimed to align the simulator with the real
robot’s behavior. Figure 4 (b) shows the simulated trajectory
Ts

αααs
0,βββ 0

using default control parameters αααs
0 and simulation

parameters βββ s
0. While the trajectory appears to follow Td , a

discrepancy with the real trajectory Tr
αααr

0
reveals inaccuracies

in the simulation.
To improve fidelity, we used the real robot’s trajectory Tr

αααr
0

as a reference, aiming to match its deviations while tracking
Td . Keeping the control parameters fixed at αααs

0, we optimized
the simulation parameters βββ using Optuna. This adjustment
resulted in a refined simulated trajectory, Ts

αααr
0,βββ
∗ , which more

closely aligned with the real-world trajectory. As shown in
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Fig. 4. (a) Robot performance before control parameter optimization. (b) Simulation inaccuracy before calibration and the improvement afterward. (c)
Changes in simulation parameters after calibration. (d) Simulation improvement after tuning the control parameters. (e) Adjustments in control parameters
after fine-tuning. (f) Final improvement in real-robot tracking using the fine-tuned control parameters.

Figure 4 (b), this calibrated trajectory better represents the
real robot’s performance.

Figure 4 c) presents a comparison between the default
initial simulation parameters βββ 0 and the optimized param-
eters βββ ∗, highlighting the changes introduced through the
calibration process. The most significant adjustments can be
observed in the velocity delay and steering delay, suggesting
that the real robot experiences inherent delays when exe-
cuting both velocity and steering commands. Additionally,
the maximum allowable acceleration was increased, while
the maximum angular velocity was slightly reduced. Con-
versely, the steering angle acceleration was increased. These
adjustments enable the simulated robot to better replicate the
real-world robot’s behavior, effectively capturing hardware-
induced limitations and response delays.

C. Control Parameter Tunning

In this step, we fine-tuned the control parameters in
simulation, αααs, while keeping fixed the optimized simulation
parameters βββ ∗ from the previous stage. Since βββ ∗ already
captures the real robot’s characteristics, the goal was to
adjust αααs to ensure the simulated robot closely follows the
desired trajectory, Td . After optimization, we obtained an
improved trajectory, Ts

ααα∗,βββ ∗ , which better aligns with the

reference trajectory. The resulting trajectories are shown in
Figure 4 (d), while Figure 4 (e) compares the initial control
parameters, αααs

0, with the optimized parameters, ααα∗.

D. Transfer Learning

In this step, the optimized control parameters are trans-
ferred to the real robot αααr ← ααα∗. The robot is then tested
again in the same environment, following the initial reference
trajectory to evaluate its performance.

Figure 4 f) illustrates the desired trajectory Td , the real
robot’s trajectory before optimization, Tr

αααr
0
, and the trajectory

obtained after applying the optimized control parameters,
Tr

ααα∗ . As observed, the optimized trajectory follows the
desired path more closely. While the robot already performed
well on straight-line segments, the most significant improve-
ment is evident in tracking the curved sections, demonstrat-
ing the effectiveness of our method for this trajectory.

E. Achieved Improvements

This section presents the improvements in three key as-
pects: tracking error, time savings, and energy consumption.
The results are summarized in Table III, with the correspond-
ing calculations detailed in Appendix VIII. These estimations
are based on approximate data.
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The table shows that our method achieved a 51.08%
reduction in tracking error, saved approximately 3.84 hours
of execution time, and reduced energy consumption by 9.175
kWh.

TABLE III
PERFORMANCE AND RESOURCE CONSUMPTION IMPROVEMENTS

Metric Original Gains Optimal Gains Improved
Tracking Error (2D-DTW) 3.72 1.82 51.08%

Estimated Real
System Consumption

Optimized Method
Consumption

Reduction

Time (hours) 9.34 5.50 3.84
Energy Consumption (kWh) 9.34 0.165 9.175

VII. CONCLUSION

We presented a simulation-driven framework to optimize
the Stanley controller for autonomous navigation. The ap-
proach follows a two-stage process: first calibrating simu-
lation parameters to reflect real-world dynamics, then opti-
mizing controller gains within the calibrated simulator. This
method reduces real-world experimentation, lowers mechan-
ical wear, and improves trajectory tracking. The resulting
control parameters transferred effectively to the physical
robot, validating the framework’s reliability.

Future work will explore broader trajectory variations to
derive more generalized gains and incorporate sensor noise
modeling—particularly from laser scans—as additional tun-
ing parameters, given their significant impact on navigation
in dynamic environments.

VIII. APPENDIX

A. Tracking Error Improvement Calculation

The tracking error improvement is computed using the
following equation:

Improvement% =
eig− eog

eig
×100 (12)

where eig = 3.72 represents the tracking error with the
initial gains, whereas eig = 1.82 represents the tracking error
with the optimized gains obtained using our method. This
formulation quantifies the relative improvement achieved
through optimization.

B. Time Savings Calculation

To estimate the time required for real-system optimization,
we define:
• ta = time to complete one trajectory (170 sec). This

value has been obtained directly from Tr
αααr

0
during the

data collection.
• σa = repositioning time before a new trial (120 sec).

This time was obtained experimentally in past experi-
ments.

• No = total trials required for the control parameter
optimization (116)

The total estimated time required on the real system is:

Estimated Real System Time =
(ta +σa) ·No

3600

Using our method, the time per simulation trial was ts = 45
sec, with Ns = 324 trials needed for simulation calibration.
The total time spent in simulation is:

Estimated Simulation Time =
(ts ·No)+(ts ·Ns)

3600
C. Energy Consumption Calculation

To estimate the energy consumption required for tuning the
control parameters on the real robot, we use pr · top, where
pr = 1kW is the robot’s power consumption, obtained from
technical datasheet; top = 9.34h is the estimated time required
to complete the tuning process on the real robot.

To compute the energy consumption using our method,
we consider a standard laptop’s power consumption of pc =
0.030kW . Given that the total simulation time is ts = 5.5h,
the energy consumption is calculated as pc · ts
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Investigating 2.5D path-planning methods for autonomous mobile
robots in complex unstructured off-road scenarios*

Andre Koczka1, and Gerald Steinbauer-Wagner1

Abstract— Most of the existing literature focuses on path
planning in 2D, where the 3D world is converted to a 2D grid
map. There is little literature on methods that can natively
utilize 2.5D or 3D information and thus use a less compressed
representation of the environment for planning. In this work,
methods from both groups were systematically compared. A
suitable simulator and physics engine have been chosen to
enable a realistic evaluation of 2.5D navigation in a simulation.
For the methods using the 2D view, classical and widely used
planning algorithms were used. To generate the map for the
classical methods, a 2.5D map was converted into a 2D map
using slope information. The classical search algorithms find a
path based on costs on the 2D map. To test a method that uses
native 2.5D data for planning, a novel approach was developed
that uses the robot’s orientations on a 2.5D elevation map.
This method samples different locations on the 2.5D map and
considers the attitude of the footprint for each position to
generate the cost. The evaluation showed that the proposed
method, which uses 2.5D data directly, planned shorter and
faster paths in most scenarios, while the journey remained safe
and reliable for the robot. The results for the classical, 2D
methods showed that they are especially useful in scenarios
where low computational power is available.

Index Terms— Path planning, Autonomous robots, rapidly-
exploring random tree

I. INTRODUCTION

Path planning for autonomous ground vehicles is usually
done on 2D costmap [6] using a search algorithm. The most
popular way of using a costmap is projecting objects detected
in data from a sensor, like LIDAR or camera, to a cell on
the map, where each position is represented either to be
occupied or free. More advanced solutions take advantage
of the value-range of a 2D costmap in the Robot Operating
System (ROS) [11] and map a probabilistic value to each
cell, which results in a gradient of values instead of binary,
lethal, and non-lethal costs. Both approaches compress the
information gathered by a 3D LIDAR or depth camera while
losing information on the terrain. While this approach can
work well if tuned correctly, it often leads to longer paths,
higher energy consumption, and potentially missed oppor-
tunities due to the conservative representation of the robot-
terrain interaction in 2D. To combat this issue, state-of-the-
art solutions use a 2.5D representation of the environment to
increase the available information on the map and plan more
intelligently by being aware of the actual terrain surface.
Planning in 2D also makes it harder to take the physical

*This work was funded by the Austrian defense research program FORTE
of the Federal Ministry of Finance (BMF) under the project PATH.

1{akoczka,gerald.steinbauer-wagner}@tugraz.at,
Institute of Software Engineering and Artificial Intelligence, Graz University
of Technology, Graz, Austria.

properties of the robot, such as the maximum tilt angle, into
account while planning on off-road areas.

Fig. 1. Flowchart showing the implemented pipeline for testing and
evaluation.

The aim of this paper is to compare planning methods
in kinematically challenging, accurately simulated off-road
environments to gain a better understanding of the properties
and limits of path planning algorithms for 2.5D environ-
mental representations. As 2.5D perception goes beyond the
scope of this work, it is assumed to be perfect. For the
simulation, the widely used robot Husky from Clearpath
Robotics [2] will be used, which is a rigid-body off-road
differential-drive robot. There are also a lot of resources
available to be able to set up a realistic simulation for the
Husky.

The contribution of this work can be summarized as
follows:
• implementation of a method that compresses 2.5D data

to a 2D costmap with minimized loss of information,
that can be used by standard search algorithms.

• a method using 2.5D information natively to estimate
traversability for complex terrains.

• a simulation pipeline with realistic physics and terrain
generation to ensure close-to-life results.

• an evaluation pipeline that is modular, and can be easily
adapted to other path planning techniques in the future
for further research.

II. RESEARCH

For planning a path, in general, the robotics community
has a broad range of well-established methods. Advances in
formulating and solving search and optimization problems
have finally enabled advanced research in path planning in
higher dimensions for drones and off-road vehicles, which
would have been impossible previously. Most solutions rely
on a well-tuned 2D obstacle map where lethal and non-lethal
obstacles are defined to cover the worst-case scenarios and
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allow for safe traversal. These solutions are computationally
efficient, however, they lack a full understanding of complex
environments. However, novel methods exploit 2.5D data
natively to allow for more intelligent path planning.

The ArtPlanner [17] by Fankhauser et al. from ANYbotics
[1] is one of the few planning pipelines using native 2.5D
information for planning. Their approach requires knowledge
about the robot’s shape and kinematic abilities. They utilize a
sampling-based approach with LazyPRM∗ at its core, which
checks the feasibility of a pose at any given sample point.
Their approach uses the whole body of the robot to check
for collisions and kinematically feasible positions using an
elevation map.
Traversability-Based RRT∗ [16] by Takemura et al. was
originally developed for a planetary rover model. The authors
approach the problem without a mapping algorithm, planning
the path directly on the perceived pointcloud. They use RRT∗

to sample the points and project the robot’s footprint to the
terrain, which they use to calculate an orientation-dependent
cost. The quality of the path in this case is highly dependent
on the LIDAR’s update frequency and point density.
”Risk-Aware Mapping and Planning”(RAMP) [14] from
Sharma et al. uses a compressed 2D representation of the
environment. The authors of the paper approach the problem
from the controller’s perspective, improving known tools and
algorithms to better understand traversability of known and
unknown terrain. The problem the authors describe is the lack
of awareness of known and unknown spaces in the control
phase. The authors use elevation mapping and compress the
2.5D representation into a 2D costmap to make it more
efficient and use an improved path planning approach on
the 2D representation to solve the described problem.
In the paper ”STEP: Stochastic Traversability Evaluation
and Planning for Risk-Aware Off-road Navigation” [8] from
Fan et al. a complete navigation pipeline is presented. The
pipeline aims to solve planning challenges in extreme off-
road situations. The authors approach the problem simi-
larly to RAMP by using elevation mapping for the global
planning problem and converting the 2.5D representation
into a 2D traversability map with a custom cost function.
They, however, couple this approach with the control and
path following problem as well, including the full 2.5D
representation of the environment in the control problem,
by calculating a kinematics-based cost for traversal. They
approach this similarly to [16] from Takemura et al. , by
using the orientation of the robot on a 2.5D map.

III. EVALUATION DESIGN

As presented in the previous section, state-of-the-art works
in off-road planning take one of two approaches:
• pipelines, that use a combination of mapping techniques

and costmap calculations, but plan using standard search
algorithms on a 2D costmap

• methods which extend their cost calculations with native
2.5D data, using the kinematic properties of the robot

In order to evaluate if the two approaches are suitable for
path planning in challenging off-road environments instances

of each approach are prepared and systematically evaluated
in a standardized, simulated setting. The first part of the
implementation and tests, corresponding to the first bullet
point in the above list, was influenced by the works STEP
[8], and RAMP [14], using a selection of search algorithms
based on the suggestions of the paper [10]. The second part
of the evaluation, expanding an algorithm to use 2.5D data
natively has been inspired by the techniques used by the
ArtPlanner [17] and Traversability-based RRT∗ [16]. This
method has been implemented from scratch, as no openly
available solution was available to test at the time of writing.
The two distinct approaches are implemented in ROS and
simulated using CoppeliaSim [12], which supports both
ROS1 and ROS2. We perform the evaluation in simulation
first as extensive tests with hardware and real environments
are not feasible. It has been determined in previous work, that
the best physics engine for simulating rolling and bouncing
(both of which are important properties for the Husky robot)
is Bullet. This is important for the realistic simulation of
robot-terrain interactions. This is also supported by the
benchmark of Kang et al. in [5] and Farley et al. in [9]. The
work of Farley et al. [9] includes the model of the Husky
robot and a corresponding Lua script for CoppeliaSim which
will be used as a basis and extended to extract more data for
the evaluation.

A. Evaluation metrics

The most problematic property of off-road traversal is the
fact that uneven terrain easily pushes the hardware to its
limits. This means that finding routes that don’t exhaust
the robot’s capabilities to a dangerous level while keeping
the path reasonably short and quickly traversable, while
consuming as little energy as possible, are the most important
goals of such a path planner. Thus, we developed a set of
metrics for our evaluation of path planning algorithms for
off road environments:
• standard deviations of roll and pitch are expected to

be lower for the 2D-based algorithms, as these will try
to minimize the cost on the slope-based costmap.

• the length of the planned path is estimated from 2D
coordinates returned by the algorithms.

• traveled path length calculated using the odometry
is expected to deviate from the generated path due to
slippage and sharp turns.

• required energy to complete a path gives a good indi-
cation of planning quality. Paths produced by the two
methods are expected to deviate in energy consumption.

• average and standard deviation of torque of the
robot joints indicate the average of the momentary
efforts the robot had to make along the path. This metric
is expected to be higher for more aggressive plans.

• travel time from sending the goal to reaching the goal
is expected to be correlated with path length, however,
it might deviate due to slippage if a low quality path is
provided which is harder to travel along.

• planning time is the time from issuing the goal to
receiving a path from the planner.
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• successful traversal of the generated path gives an
indication if the planner has provided a traversable path.
This metric uses a timeout of 6 minutes for reaching the
goal.

IV. METHODOLOGY AND IMPLEMENTATION

In order to evaluate the quality of a path provided by the
path planners, a complete system of perception, planning,
and execution is needed, as the robot will be executing the
plans in the simulation system. The building blocks of this
system are described in this section.

A. 2.5D grid map and conversion to 2D

The first method, which follows the style of papers [8]
and [14], implements a conversion mechanism, that filters
the 2.5D grid map and converts it into a 2D costmap while
maintaining terrain awareness. By doing this, we ensure, that
the initial source of information (the elvation map) ist the
same for both methods, while retaining the maximum amount
of information in 2D. The conversion is done using a slope
filter, which converts slope data into cost values on the 2D
costmap. This method works by applying a mathematical
filter to the elevation map, which calculates the normal vector
of every cell on the map, and takes the arc-cosine of these
normal vectors. This results in a map of slope values in
radians. It is known from the datasheet of the Husky, that
its maximum claimable slope is 30 degrees. It is known
from initial testing, that the realistically climbable slope on
a smooth, rocky surface is around 25 degrees. By adjusting
the maximum degree of slope to be 25 degrees, any slope
that’s over this value will be clipped to the maximum lethal
value on the map. This results in a gradient of slope values
between 0 and 25 degrees, which is a good representation
of where the robot can safely traverse. The cost of a cell on
the map thus looks as follows:

C(x,y) = min(255 · α(x,y)
27

) (1)

where α represents the calculated slope value in degrees at
given map coordinates. The algorithms that will be used
for standard planning on a 2D map are A∗, Theta∗, D∗,
and RRT∗ which were selected based on the decision tree
shown in [10] by Gargano et al. Even though A∗ would
be sufficient to test as a graph-based search algorithm,
due to its wide usage and popularity, its newer iterations,
D∗ and Theta∗ have also been investigated to see if they
have any disadvantage for future work. Thus, the algorithms
Theta∗, and D∗ are expected to perform similarly or even
the same as A∗, because the underlying heuristics guarantee
an optimal solution for each of these algorithms. Theta∗

might perform worse than A∗, due to it connecting line-
of-sight nodes without considering the costs between them.
RRT∗ is considered for its speed, efficiency, and asymptotic
optimality. This is also the algorithm, which will be extended
to use 2.5D information directly. The cost function of each
algorithm, including heuristics, looks as follows:

C(n) = g(n)+h(n)+ γ(n) (2)

where γ(n) represents the cost of the cell at position n shown
in Equation 1. C(n) is then the estimated cost of the path
from the start node until the goal, taking node n. The cost
g(n) is the already accumulated cost until the last node before
expansion, and h(n) is the heuristic cost, which in the case
of A∗ is the Euclidean distance to the goal.

B. Extended RRT∗

The second method uses the height and terrain data of
the 2.5D grid map natively during planning, similar to the
works in [17], [16] and [8] by using the robot’s footprint
to determine the attitude. The most important factor when
planning on rough terrain is the locomotion capabilities of
the robot. This is strictly bounded by its kinematic limits,
like tipping angle, and max climbing angle. Following the
idea of [16] RRT∗ is extended with an additional function,
which projects the robot’s footprint onto the 2.5D data and
determines a cost from its attitude. Instead of doing this on
a pointcloud as shown in the paper [16], it is done on a 2.5D
grid map. This approach has the advantage, that a uniformly
distributed map is used, regardless of point density, and
independent from the capabilities of the sensor. The choice
of RRT∗ ensures that given enough time and samples, the
solution should converge to an optimal path. It is however
planned for future work to also test other sampling-based
methods as a basis for this contribution, like LazyPRM∗, that
is also used by the ArtPlanner [17]. By projecting the robot’s
footprint onto the grid at any given point, the representation
of the robot’s position and attitude can be described with
the translation and attitude of its footprint in space. The
projected plane (called pseudo-plane in [16]) has a normal
vector on the surface of the plane at an arbitrary sampling
point, which at any given time is solely dependent on the
plane’s position relative to the grid map. From this normal
vector, the roll and pitch values can be extracted and used in
a cost function. The cost function is a weighted sum of the
values, similarly to the method shown the paper [16]. The
yaw or rotation of the currently sampled point on the plane
is dependent on the previous (parent) node in case of RRT∗,
and is calculated by taking the angle between the parent and
currently sampled node in reference to the map’s frame. The
four wheels of the robot form a rectangle. Projecting a rigid
rectangle onto a height map is not a trivial problem. If two
opposing corners of a rectangle are at different heights, it
leads to a diagonal split in the middle, which separates the
rectangle into 2 triangles, which leads to two possible normal
vectors, one for each half, without any obvious method to
choose one. To simplify this problem, an assumption is made:
the two rear wheels of the robot will only be considered at
one point, in the middle, forming a triangle of the robot.
While this isn’t ideal, it is still a good representation of the
possible orientation of a rigid-body robot when projected
onto a plane. The footprint is illustrated for the Husky robot
in Figure 2 on the left. Now, projecting these three points
onto a height map will always result in a triangle with an
even surface. More importantly, the normal vector can be
easily calculated now, by taking the cross product of two
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Fig. 2. The triangle formed between the front two wheels and the average
of the rear wheels illustrated on the Husky robot on the left, and the normal
vector along with the projected triangle footprint visualized in RViz on the
2.5D grid map on the right.

sides of this triangle.
An obvious issue with this method is the fact that if a

small, but lethal obstacle falls into the area of the triangle,
it won’t be considered by the algorithm at all. This wasn’t
an issue for the tests conducted in work, but this case must
be handled in the future for real-life tests. Taking the cross
product of two of the edges of the projected triangle, and
normalizing it results in the normal vector of the plane.
To calculate the pitch and roll of the normal vector, the
following function is used:

g(k) =
[

φk
θk

]
=

[
atan2(nx,nz)
−atan2(ny,nz)

]
(3)

where nx ny and nz represent the components of the
calculated normal vector. The resulting normal vector is
visualized in RViz in Figure 2 on the right.

Pitch and roll can then be used to form the following cost
function:

C(k) = (Wφ
|φk|
Nφ

+Wθ
|θk|
Nθ

)Ws (4)

φ represents pitch, and θ represents the roll values cal-
culated in the previous step. For simplicity, in this proof-of-
concept implementation, only the absolute value of these are
taken, however, the option to use the sign of these variables is
left for future work, as it might be useful to penalize going
up or downhill. The factors Nφ and Nθ are normalization
values, which have been defined empirically to be 100 and
serve the purpose of scaling the values, such that they aren’t
dominant in comparison to the distance cost. Furthermore,
the weight factors Wφ and Wθ have been defined to be able
to adjust the influence of each factor independently, while
Ws adjusts the influence of the entire expression. The weight
values have been set up to be adjustable using a feature of
ROS called ”dynamic reconfigure” [4]. Additionally to the
cost-calculation, an initial feasibility-check is done to ensure
that the roll and pitch values are within the maximum range,
and the sample is thrown away if it isn’t the case.

C. Terrain generation and simulation setup

The ground truth terrains are generated using Blender with
its built-in geometry node plugin using ridged-multifractal
noise [3] which uses Perlin noise[7] at it’s basis. The point
cloud for elevation mapping is also exported during this
process with high density. The main limitations of map
size are the file size for storage and the processing power

needed to use them. The maps used are as large as it was
practically possible, with 50m x 50m. The tested algorithms
are assumed to work seamlessly on a real setup, using a
much smaller, rolling map, if they are able to achieve good
enough performance on such a large map. For this work, a
total of 5 random terrains have been generated randomly to
represent different terrain difficulties. Moreover, a 6th one
was created manually to visualize the benefit of the 2.5D
planning method. This will be shown in Section V. The
terrains are then imported manually into CoppeliaSim. The
starting position of the robot has been chosen to be a random
corner of each map. To increase the number of planning
problems, the opposite corner is used on each map as a
second starting position. This effectively leads to 10 different
terrains from the perspective of the planning algorithm.
For each terrain, 5 goal positions are distributed on the
map. These goal positions have been chosen empirically, by
driving the robot manually and making sure that the positions
are actually reachable. In future work, this process shall also
be automated to be able to test an arbitrary number of terrains
and goal positions. 5 terrains with 2 starting positions and 5
goals each lead to 50 unique planning problems for each of
the tested algorithms. An example terrain with marked start
and goal positions is shown as a 2D costmap in Figure 3. To

Fig. 3. Example goal positions on a generated terrain. The robot’s initial
positions are indicated by a red X in the bottom left corner and in the upper
right corner.

evaluate energy consumption, the Lua script in CoppeliaSim
has been extended to progressively calculate and publish the
cumulative energy used by the virtual motors of the Husky
robot to a ROS topic.

D. Evaluation
For testing, a Python script has been developed which

automates the process, loads the simulation, and saves all
the recorded data. For every algorithm, the program iterates
through generated terrains, and for each terrain, the cor-
responding navigation tasks (goal positions) are executed.
During execution, the script receives data from ROS mes-
sages continuously. All data is saved into .csv data frames
and array files, which are evaluated later using another
automated script. Saving all raw data also makes it possible
to evaluate any run using other criteria in the future. The
flow of the automation script is shown in Figure 4. For path
execution, a basic version of Timed-Elastic-Bands(TEB) [13]
has been used as a controller (without object avoidance), and
tuned empirically to follow the generated paths as strictly as
possible, with as little influence as possible.
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Fig. 4. The flowchart showing the process of the evaluation, executed by the test script. The script is started manually and iterates through a list of
registered algorithms, terrains and goal positions, which can be of arbitrary length.

V. RESULTS

The results will show averaged metrics over all planning
problems. The final results have only been calculated for
runs that all algorithms completed successfully so that the
comparison stays fair (union of all data where execution
succeeded). A successful execution was defined by reaching
the goal within 6 minutes after generating a path.
First, the number of failed executions will be shown (see
Figure 5). Please note that for RRT∗ and the proposed, ex-
tended RRT∗, which will be called ”RRT∗ Kin.” (kinematic)
in the plots, the worst-case number of failures of 5 full sets of
navigation tasks is given. The most frequent cause of a failed

Fig. 5. The percentage of total failures across algorithms. RRT∗ and RRT∗
kinematic shows the worst case failures of all the runs.

execution was turning on slopes, where a differential drive
robot struggles the most, as it loses friction while also having
a shifted weight distribution. The proposed method has only
failed due to this issue. Other algorithms have frequent cases
of getting stuck in tight corridors or valleys due to the lack
of terrain awareness.

Perhaps the most important finding of all is the average
effort in watt-hours (see Figure 6). It was expected that the
proposed extended method, RRT∗ kinematic, would produce
paths that consume more energy because it takes more
aggressive paths. However, due to the fact that on average it
produced 5% shorter paths than the next best algorithm while
having a low variance in yaw (less turning) made it the best
regarding power consumption in the tested scenarios.

By taking shortcuts at safe places, which are within the
robot’s kinematic capabilities, the proposed method was less
susceptible to turning on slopes and also made less sharp
turns leading to an overall shorter path. This behavior is also
confirmed by the results shown in Figure 7, which shows the
cumulative height difference.

Looking at Figure 7 it can be concluded, that the higher
cumulative height difference did not have a negative influ-
ence on travel times, making the proposed method the fastest
by a small margin. It also shows that travel times are more

Fig. 6. The averaged traveled path lengths in meter on the left, and the
averaged energy needed (effort) in Wh across all algorithms, terrains, and
paths.

Fig. 7. The cumulative height difference of traveled paths on the left and
the mean of travel time on the right, averaged over all paths and terrains.

correlated with the path length than with the cumulative
height, which means that all algorithms managed to find
more-or-less easily traversable trajectories for the robot.

Looking at the mean standard deviation of roll and pitch
shown in Figure 8 together with traversal time in Figure
7 suggests that taking a smoother path only has a small
negative impact on travel time. Thus, in some cases it might
be more feasible to take a flatter path. It was expected that
the standard 2D costmap-based algorithms would produce a
path with fewer variations as they only use a limited amount
of information, and prefer lower-cost cells.

Fig. 8. The averaged standard deviation roll and pitch across all algorithms,
terrains, and paths.

Unexpectedly, the vanilla RRT∗ algorithm produced a high
cumulative height difference, while also traveling longer.
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This could be explained by the fact that it produces similar
paths to Theta∗, with lots of straight sections, but having
much more of these sections, leading to more unwanted zig-
zag turns. Figure 6 showed that the proposed method actually
consumed about 3% less energy than the next best algorithm.
Taking the standard deviation of yaw, pitch, and roll, and the
cumulative height into account, it can be concluded that it’s
most of the time more efficient to go above a hill than to go
around it if it can be guaranteed that the robot can operate
within its limits.
Until now, the results are promising, especially due to the fact
that the proof-of-concept method already performs well in
the initial version. Unfortunately, a significant disadvantage
of the proposed method is planning time. On average, the
proposed solution returns a path in 7630ms for the given
map size, which is very high in comparison to the 30-300ms
path-return times of the classical 2D search algorithms.
However, looking at the unmodified RRT∗, the planning time
only decreases by about 900ms to 6725ms. This shows that
the added cost calculations using the robot’s footprint have
a relatively low impact on the planning time. Thus, the
implementation has been determined to be inefficient, and
as a next step, the solution will be re-implemented using
the popular Open Motion Planning (OMPL) [15] library to
improve speed.
In order to visualize the advantage of the proposed method
even better, a map with a single ramp with a slope of 29
degrees has been made. This is above the set worst- case cost
factor of the classical algorithms, and thus all of them fail to
provide a path to the goal. However, the proposed solution
can find a skewed path that stays within the bounds of the
robot, as the slope is less steep from a skewed perspective.
This is shown in Figure 9.

Fig. 9. Planning skewed to the slope makes the slope less steep.

VI. SUMMARY AND OUTLOOK

The evaluations provided us with valuable information
regarding planning on uneven terrain. It has been shown that
using 2.5D information natively is beneficial for planning in
off-road scenarios by evaluating different metrics recorded
during testing. It has also been concluded, that the proposed
approach is less computationally efficient than methods using
standard search-based algorithms on a 2D costmap. Thus,
there is still work to be done for the developed 2.5D-based
planner to be usable in real-time with a real robot. For the
2D approach one of the most basic and widely used methods
has been used. It compresses the terrain data into a slope
map, which results in the least amount of loss of information
about the environment. In reality, the slope map could be

extended by additional traversability costs to also account for
different surface types and roughness levels. Meanwhile, the
proposed method using 2.5D data directly has great potential
of combining the cost calculation on a 2.5D surface with
other types of map layers to make planning more efficient. As
the proposed method is only a proof-of-concept solution, it
still requires more work to achieve a better quality outcome.
Path executions failed in most cases due to turning on slopes.
In future work, a converted slope map could be taken into
account by the controller to restrict turning on steep slopes,
similar to the paper [14], which would mitigate this issue.
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LiDAR-Based Ground Segmentation with Structured Point Clouds for
Multi-Sensor AMRs*

Hamid Didari1 and Gerald Steinbauer-Wagner1

Abstract— LiDAR-based perception is a popular component
of autonomous mobile robots (AMRs) for obstacle avoidance
and traversable area detection. Traditional ground segmenta-
tion approaches, such as ring-based methods, often assume a
fixed sensor placement and may struggle in multi-LiDAR or
tilted sensor configurations. To overcome these limitations, we
propose a novel segmentation approach based on the organized
point cloud representation, which preserves the spatial arrange-
ment of LiDAR data in a structured 2D format. Our method
first organizes the raw point cloud into a structured array,
ensuring direct neighborhood accessibility without additional
spatial searches. We then use a rolling window over the array
to estimate surface normal vectors. Ground segmentation is
performed iteratively by classifying normal vectors based on
orientation and height consistency. A likelihood approach is
further utilized to segment points by assigning them to their
corresponding normal vectors. Furthermore, we evaluate our
method through experimental tests on a real-world multi-
LiDAR AMR in five different scenarios within unstructured
environments, achieving an average accuracy of 0.939.

Index Terms— Mobile Robots, Scene Understanding, Off-
Road Navigation

I. INTRODUCTION

The deployment of autonomous mobile robots (AMRs)
in logistics has become increasingly prevalent due to their
potential to enhance productivity and reduce costs. Research
by Keith and La [10] highlights that AMRs improve ef-
ficiency by minimizing manual labor in repetitive tasks,
leading to lower operational costs and increased through-
put. Similarly, a multiple case study by Grover et al. [7]
identifies AMRs as key enablers of digital transformation
in Industry 4.0 warehouses, where they contribute to cost
reduction through efficient material handling and workflow
optimization. Economic analyses further indicate that AMRs
can lead to substantial long-term savings. A study by Zhang
et al. [11] evaluates the return on investment (ROI) of AMR
deployment, showing that companies recover their initial
investment due to reduced labor expenses and increased
productivity.

Despite their benefits, widespread AMR adoption in dy-
namic and unstructured environments faces several chal-
lenges, with local perception being one of the most critical.
AMRs rely on LiDAR, cameras, and radar to perceive their
surroundings, but sensor noise, occlusions, and environmen-
tal variations pose challenges. Among various perception

1Hamid Didari and Gerald Steinbauer-Wagner are with the Institute
of Software Technology, Graz University of Technology, Graz, Austria.
{hamid.didari, steinbauer}@ist.tugraz.at

*This work was funded by the Austrian Research Funding Association
(FFG) under the scope of the THINK.WOOD.INNOVATION program.

technologies, LiDAR-based perception is particularly effec-
tive in enabling AMRs to navigate complex environments
by accurately detecting obstacles and identifying traversable
areas. By generating high-resolution 3D point clouds, Li-
DAR sensors provide a precise spatial representation of the
surroundings, allowing robots to differentiate between safe
paths and potential hazards. This capability is critical for
obstacle avoidance and traversable area detection, especially
in outdoor and dynamic environments where other sensors
may struggle due to lighting variations.

Ground segmentation is a fundamental task in LiDAR-
based perception, facilitating accurate obstacle detection and
navigation. Traditional methods often employ geometric ap-
proaches, such as plane fitting and elevation thresholding, to
distinguish ground from non-ground points. However, these
methods may struggle with complex terrains and require
manual parameter tuning. To overcome these challenges,
modern approaches integrate probabilistic models and ma-
chine learning techniques. Markov Random Fields (MRF)
has been used to model spatial relationships between points,
improving segmentation accuracy in uneven terrains [15].
Additionally, deep learning-based methods, such as Convolu-
tional Neural Networks (CNNs), can learn complex patterns
in point cloud data, enabling robust ground segmentation in
diverse environments [14].

A more recent and efficient approach is ring-based ground
segmentation, such as Patchwork, which leverages the struc-
ture of LiDAR point clouds to classify ground and obstacles
[12]. Patchwork progressively segments the ground from
near to far distances using LiDAR’s ring structure, improv-
ing computational efficiency and robustness in unstructured
outdoor terrains. However, a major limitation of Patchwork
and many deep learning-based segmentation methods is the
assumption that the LiDAR sensor is mounted horizontally
at the robot’s center. In reality, AMRs may use multiple
LiDARs positioned at different angles or orientations—such
as tilted or vertically mounted sensors—to enhance 3D
coverage.

To overcome this limitation, we developed a segmentation
approach based on the organized point cloud representation
instead of partitioning space into rings. An organized point
cloud is a structured representation where LiDAR points
are stored in a 2D array format, preserving their spatial
arrangement as captured by the sensor. This contrasts with
an unstructured point cloud, where points are stored in a
random order without inherent neighborhood relationships.
The advantage of an organized point cloud is that each
point’s neighboring points are directly accessible using fixed
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indices.
By leveraging this structure, our method ensures that par-

titioning is independent of the LiDAR setup, making it more
adaptable to different sensor configurations. We compute
the normal vector for each partition and fit a likelihood
model to the points within it. Since the robot is assumed
to be on a traversable surface, partitions with a zero mean
height are classified as ground. From these initial ground
partitions, we iteratively expand to neighboring partitions
that are unlabeled. A partition is labeled as ground if its
surface inclination angle is below a predefined threshold and
its height difference from a known ground partition is within
acceptable limits.

Furthermore, we use the likelihood model of each normal
vector to classify points in the point cloud. This structured
approach allows us to determine which normal vector a
given point belongs to, even when neighboring points in the
organized point cloud are not necessarily part of the same
surface. This is because neighboring in the organized point
cloud is based on the sensor’s capturing position rather than
the actual 3D spatial arrangement.

The structure of the remaining sections of the paper
is as follows: the next section gives an overview of the
related work, followed by Section III, which provides details
on the developed method. In the consecutive section, the
evaluation and results are presented, and lastly, in Section
V we conclude the paper with drawn conclusions and future
work.

II. RELATED WORK

There are different approaches for point cloud segmen-
tation. One approach works directly on the point cloud, as
demonstrated by Diaz et al. [4], who proposed two methods
for ground segmentation: Normal Vector-Based Filtering,
which utilizes KNN, PCA, and Naı̈ve Bayes classification,
followed by RANSAC plane fitting to refine ground points;
and Voxel-Based Filtering, which structures the point cloud
into 3D voxels, applies height-based filtering, 3D adja-
cency segmentation, and statistical refinement. While the
first method achieved slightly higher accuracy, the voxel-
based approach was faster, making it the preferred choice for
real-time applications. Another notable approach is the fast
segmentation method proposed by Himmelsbach et al. [8],
designed for autonomous ground vehicles. Their method
splits the segmentation process into two steps: local ground
plane estimation and fast 2D connected components labeling.
This strategy efficiently processes large, unordered 3D point
clouds by first separating ground and non-ground points
using local plane fitting and then clustering the remain-
ing points based on spatial connectivity. Golovinskiy and
Funkhouser [6] introduced a min-cut-based segmentation
method that formulates point cloud segmentation as a graph
optimization problem. Their approach constructs a k-nearest
neighbors graph, applies a background penalty function,
and enforces foreground constraints to achieve robust seg-
mentation. The segmentation is determined by solving a
global min-cut optimization, which minimizes the cost of

separating object points from the background. The method
supports both automatic and interactive segmentation and is
particularly effective in complex urban environments where
object-background separation is challenging. More recently,
Huang et al. [9] introduced a coarse-to-fine MRF-based
approach to improve ground segmentation accuracy while
maintaining computational efficiency. Their method first per-
forms coarse segmentation using local feature extraction to
classify points into high-confidence obstacle, ground, and
unknown points. The MRF model is then constructed using
the coarsely segmented data, eliminating the need for prior
knowledge. The graph cut algorithm minimizes the MRF
model to refine segmentation results. Additionally, deep
learning-based approaches have gained traction for efficient
and accurate segmentation of LiDAR point clouds. One such
method is SalsaNet, introduced by Aksoy et al. [1], which
is an encoder-decoder-based deep learning model designed
for fast road and vehicle segmentation. SalsaNet processes
LiDAR point clouds in a Bird-Eye-View (BEV) projection
and utilizes ResNet blocks in the encoder for efficient feature
extraction. It also incorporates a class-balanced loss function
to address the imbalance between road and vehicle classes
in autonomous driving scenarios. Building upon SalsaNet,
Cortinhal et al. [3] introduced SalsaNext, an improved net-
work for semantic segmentation of LiDAR point clouds
with uncertainty estimation. SalsaNext extends SalsaNet by
incorporating a novel context module, a residual dilated
convolution stack, and a pixel-shuffle layer in the decoder to
improve segmentation accuracy while maintaining efficiency.
Additionally, SalsaNext applies Bayesian treatment to esti-
mate epistemic and aleatoric uncertainties, making it a robust
choice for safety-critical applications such as autonomous
driving.

III. METHOD

To overcome the limitations of ring-based segmentation
approaches, such as the assumption that the LiDAR is
mounted horizontally at the center of the robot, and to
support multi-LiDAR configurations, we propose a method
that utilizes the organized point cloud representation instead
of partitioning the space into concentric rings. Our approach
arranges each LiDAR data into a structured array, Rm×n×3,
where m and n represent the sensor’s vertical and horizontal
resolution, respectively. This format preserves the spatial
arrangement of points as captured by the sensor, with each
cell storing its corresponding (x,y,z) coordinates. By main-
taining this structured representation, we eliminate the need
for a kd-tree [2] to find neighboring points when computing
normal vectors. Traditional kd-tree search has a complexity
of O(logN) for nearest neighbor queries, where N is the
number of points in the cloud. In contrast, our structured
representation enables direct access to neighboring points in
constant time O(1), reducing computational overhead. The
segmentation pipeline consists of the following steps: (1)
finding neighboring points based on their indices in the 2D
structured array and removing outliers for each LiDAR, (2)
estimating normal vectors, (3) classifying normal vectors, (4)
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Fig. 1. Segmentation Pipeline: First, for each LiDAR, points are sorted into a structured 2D array. Then, normal vectors are estimated and labeled,
followed by assigning points to their corresponding normal vectors.

assigning labels to the points using Likelihood Estimation,
and (5) merge the labeled points from different LiDARs
into one. A high-level overview of the pipeline is shown
in Figure 1.

A. Rolling Window
Given an array where each cell corresponds to a point

P ∈ Rm×n×3, we use a rolling window instead of fixed
partitioning. This technique ensures that each point’s local
neighborhood is dynamically considered, leading to better
spatial consistency and more accurate normal estimations. A
rolling window of size w×w is defined as:

Wi, j =
{

pu,v

∣∣∣ i− w
2
≤ u≤ i+

w
2
, j− w

2
≤ v≤ j+

w
2

}
. (1)

Since being in the same window does not necessarily
imply that all points belong to the same physical surface,
we first apply an outlier removal step. Given a point p =
(x,y,z) ∈Wi, j, we define its radial distance as:

dp =
√

x2 + y2 + z2. (2)

A point is considered an outlier and removed if:

|dp− d̄wi, j|
d̄wi, j

> τd , (3)

where d̄wi, j is the mean distance of all points in Wi, j, and
τd is a predefined threshold controlling the allowed deviation.

B. Normal Estimation
For each window Wi, j, we estimate the surface normal

vector nwi, j by fitting a plane using PCA. Given a local
set of k neighboring points Xwi, j = {p1,p2, . . . ,pk} from the
window, the normal vector nwi, j is computed as:

nwi, j = argmin
n ∑

p∈Xwi, j

(n · (p− p̄wi, j))
2, (4)

where p̄wi, j is the centroid of the points in Xwi, j .
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C. Ground Classification

Since the robot operates on a traversable surface, each wi, j
with a mean height h̄wi, j close to zero (in the robot’s base
frame) is initially classified as ground:

Gwi, j =

{
1, if |h̄wi, j −hr|< εh,

−1, otherwise.
(5)

Here, Gwi, j = 1 indicates that the region is labeled as
ground, while Gwi, j =−1 denotes an unknown classification.
hr represents the reference ground height, and εh is a
predefined height tolerance threshold.

Next, we apply an iterative expansion strategy. For each
labeled ground window wi, j, we iteratively check its neigh-
boring window wm,n and classify it as ground if:

|h̄wm,n − h̄wi, j |< δh and θm,n < θthresh, (6)

where wm,n is a neighbor of wi, j, δh is the allowed height
difference between neighboring window, and θm,n is the
surface inclination angle computed as:

θm,n = cos−1(nm,n · z), (7)

with z being the global vertical unit vector. This process
is repeated iteratively until no new windows are labeled
as ground. Finally, any remaining unlabeled windows are
classified as non-ground.

D. Point Labeling Using Likelihood

After estimating the normal vectors and labeling the
windows, we use a likelihood approach to estimate whether
a given point belongs to a particular surface. This is particu-
larly useful for correctly classifying points that are not direct
neighbors in the 2D array but belong to the same physical
surface due to edge continuity.

To achieve this, we model the likelihood of a point p
belonging to the surface associated with the normal vector
nwi, j as:

L(p | nwi, j) =
1√

2πσ2
exp

(
−
(dp,wi, j)

2

2σ2

)
, (8)

where dp,wi, j is the perpendicular distance of the point
p from the plane defined by the normal vector nwi, j , and
σwi, j represents the standard deviation of distances for points
within wi, j.

The perpendicular distance is computed as:

dp,wi, j = (p− p̄wi, j) ·nwi, j , (9)

where p̄wi, j is the centroid of wi, j.
A point p is classified as belonging to the surface asso-

ciated with normal vector nwi, j if its likelihood L(p | nwi, j)
exceeds a predefined threshold τL.

To assign labels to individual points, we compute the
likelihood of each point belonging to different windows
and assign it the label of the window that maximizes the
likelihood. Given a point p, its assigned label is:

Fig. 2. The experimental robot setup equipped with two 32-layer Hesai
LiDARs.

ℓ(p) = argmax
wi, j

L(p | nwi, j). (10)

This approach ensures that each point is assigned to
the most probable surface, leading to more consistent and
accurate segmentation.

IV. RESULTS

AMRs are deployed in various environments, necessitating
different LiDAR configurations based on the specific appli-
cation. For instance, autonomous vehicles often utilize high-
resolution 128-layer LiDARs, like in the KITTI dataset [5],
to achieve a comprehensive 360-degree view. In contrast, our
application involves operation in unstructured environments,
where dense point cloud coverage in front of the robot
is crucial for distinguishing traversable and non-traversable
slopes. To achieve this without relying on an expensive
128-layer LiDAR, we employ two 32-layer Hesai LiDARs,
mounted on the front left and right of the robot. This
configuration enhances the density of LiDAR points in the
robot’s immediate path. The experimental robot setup and
LiDAR configuration are illustrated in Figure 2.

To assess the performance of the developed method, we
compute error metrics across five different scenarios, includ-
ing slopes, unstructured environments, and campus areas,
as shown in Figure IV, and compare them to Patchwork
[12]. Additionally, we use Label Cloud [13] to manually
annotate points in the point cloud. In the following section,
we introduce the error metrics and evaluate the performance
of the developed method across these five scenarios.

A. Error Metrics

To quantitatively evaluate the performance of our method,
we employ five metrics: Precision, Recall, F1 score, Accu-
racy, and Coverage. These metrics assess the classification
performance based on the number of correctly and incor-
rectly classified points.

Let the number of True Positives (TP), True Negatives
(TN), False Positives (FP), and False Negatives (FN) be
denoted as NTP, NTN, NFP, and NFN, respectively. The eval-
uation metrics are defined as follows:
• Precision (Positive Predictive Value): measures the pro-

portion of correctly identified positive instances among
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Fig. 3. Illustration of the ground segmentation process. (a) environment of the scenario. (b) raw LiDAR point cloud with colors representing point height.
(c) extracted normal vectors and classification results, distinguishing segmented ground (green) and non-ground (red) regions. (d) final segmented point
cloud, where green points are labeled as ground and red points as non-ground. Scenario 1 and 3 feature flat ground, scenario 2 includes a slope in front
of the robot, scenario 4 depicts a road with a ditch on the right side, and scenario 5 represents an off-road area with varying slopes.

all predicted positive instances.

Precision =
NTP

NTP +NFP
(11)

• Recall (Sensitivity or True Positive Rate): measures the
proportion of correctly identified positive instances out
of all actual positive instances.

Recall =
NTP

NTP +NFN
(12)

• F1 Score: the harmonic mean of Precision and Recall,
providing a balanced measure of model performance,
especially in cases of class imbalance.

F1 =
2 ·NTP

2 ·NTP +NFP +NFN
(13)

• Accuracy: measures the overall proportion of correctly
classified instances out of all instances.

Accuracy =
NTP +NTN

NTP +NTN +NFP +NFN
(14)

• Coverage: measures the proportion of labeled points
among all data points.

Coverage =
NTP +NTN +NFP +NFN

Ntotal
(15)

A high Precision indicates fewer false positives, while a
high Recall suggests fewer false negatives. The F1 Score
provides a trade-off between these two metrics, and Accu-
racy gives an overall measure of classification correctness.
Coverage ensures an assessment of how much of the dataset
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is labeled. This measure also depends on the sensor setup;
for instance, in our setup, since the sensor is installed tilted,
as we move farther from the sensor, the density of points
in an area becomes lower and lower, making it difficult to
calculate normal vectors. These metrics collectively provide a
comprehensive evaluation of the segmentation performance.

B. Performance Evaluation

One of the key aspects of evaluating our method is the
coverage of labeled points, which directly impacts segmen-
tation accuracy. Labeling a point requires the assignment of
a normal vector, but in some cases, this is not feasible. For
instance, points that are farther from the LiDAR sensor tend
to have larger spatial gaps, making it challenging to compute
a reliable normal vector. Additionally, points in high-variance
regions, such as those affected by vegetation or irregular
surfaces, may lack sufficient neighboring points to form a
well-defined surface. In such cases, points remain unlabeled
due to insufficient data.

The results indicate that scenarios with a higher presence
of trees, such as Scenario 1, tend to have a lower coverage
value, as a greater proportion of points do not belong to
distinct, continuous surfaces. Conversely, environments with
fewer trees lead to higher coverage. On average, across the
five evaluated scenarios, our method achieves a coverage
value of 0.897, as detailed in Table I. PatchWork shows
better coverage since it uses the entire point cloud for
labeling rather than processing each LiDAR separately. It
also performs better in scenarios with fewer slopes. Overall,
while PatchWork achieves higher coverage, our method
demonstrates better average performance across the five
scenarios.

Scenario Coverage Accuracy Precision Recall F1 Score
Ours Patchwork Ours Patchwork Ours Patchwork Ours Patchwork Ours Patchwork

1 0.749 0.972 0.84 0.912 0.828 0.898 0.843 0.914 0.834 0.904
2 0.907 0.961 0.971 0.925 0.892 0.777 0.971 0.92 0.930 0.820
3 0.920 0.981 0.952 0.971 0.953 0.972 0.951 0.970 0.952 0.971
4 0.962 0.926 0.970 0.921 0.955 0.907 0.970 0.921 0.962 0.913
5 0.949 0.956 0.961 0.951 0.948 0.938 0.960 0.950 0.955 0.945

Avg 0.897 0.959 0.939 0.936 0.915 0.898 0.939 0.935 0.927 0.911

TABLE I
PERFORMANCE METRICS COMPARISON: OURS VS. PATCHWORK [12]

The segmentation method demonstrates high accuracy
across different environments, as indicated by the average
accuracy of 0.939 and an F1-score of 0.927. These values
suggest that the approach consistently distinguishes ground
points from non-ground points with minimal misclassifica-
tions. The average precision of 0.915 indicates that false
positives were minimized, meaning non-ground points were
rarely misclassified as ground, while the Recall (0.939 avg.)
confirms that most ground points were correctly identified.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a LiDAR-based ground seg-
mentation method that efficiently preserves spatial structure
by using an organized point cloud, making it adaptable to
different sensor configurations. By directly accessing neigh-
boring points, we extract normal vectors and classify them as

ground or obstacles. Furthermore, we assign points to normal
vectors using a likelihood-based approach. Experimental
evaluations across five diverse scenarios showed an average
accuracy of 0.939 and an F1-score of 0.927, demonstrating
its reliability in distinguishing ground from non-ground
points. The method also adapts well to unstructured terrains
and multi-LiDAR configurations, proving useful for real-
world robotic navigation.

One limitation of our work is that we process each point
cloud separately and do not consider the overlap between
point clouds. This overlap can be addressed in future work by
incorporating LiDAR transformations relative to each other.
By doing so, we can directly access local neighboring points
from multiple LiDARs, improving segmentation accuracy
and consistency.
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Multi-Waypoint Path Planning and Motion Control for Non-holonomic
Mobile Robots in Agricultural Applications

Mahmoud Ghorab and Matthias Lorenzen

Abstract— There is a growing demand for autonomous mo-
bile robots capable of navigating unstructured agricultural
environments. Tasks such as weed control in meadows require
efficient path planning through an unordered set of coordinates
while minimizing travel distance and adhering to curvature
constraints to prevent soil damage and protect vegetation. This
paper presents an integrated navigation framework combining
a global path planner based on the Dubins Traveling Salesman
Problem (DTSP) with a Nonlinear Model Predictive Control
(NMPC) strategy for local path planning and control. The
DTSP generates a minimum-length, curvature-constrained path
that efficiently visits all targets, while the NMPC leverages
this path to compute control signals to accurately reach each
waypoint. The system’s performance was validated through
comparative simulation analysis on real-world field datasets,
demonstrating that the coupled DTSP-based planner produced
smoother and shorter paths, with a reduction of about 16%
in the provided scenario, compared to decoupled methods.
Based thereon, the NMPC controller effectively steered the
robot to the desired waypoints, while locally optimizing the
trajectory and ensuring adherence to constraints. These findings
demonstrate the potential of the proposed framework for
efficient autonomous navigation in agricultural environments.

Index Terms— Motion Planning and Control, Agricultural
Robots, Dubins Traveling Salesman Problem, Model Predictive
Control.

I. INTRODUCTION

Autonomous navigation in unstructured agricultural en-
vironments, such as meadows, poses significant challenges
due to unpredictable terrain, the non-holonomic system dy-
namics of many mobile robots, and the possible presence
of both static and dynamic obstacles [15]. An ecological
weed control system is a prime application where efficient
navigation is crucial, enabling the reduction of herbicide
use and minimizing human intervention. In the considered
application, the process begins by selecting a geo-fence
that defines the field’s safety boundaries, ensuring the robot
operates within a designated area. Next, the target weeds
are autonomously detected and mapped during a scanning
phase. Once the scanning and mapping are complete, the
robot is tasked with navigating to the identified weeds and
eliminating them using a mechanical weed removal tool,
avoiding the use of chemical herbicides. This last phase is
the primary focus of this work, where the proposed DTSP-
based global path planner, as well as the NMPC local path

This work was supported by the BMBF, Deutsche Agentur für Transfer
und Innovation within the program DATIpilot.

Mahmoud Ghorab and Matthias Lorenzen are with Insti-
tute for Applied Artificial Intelligence and Robotics (IKR),
Kempten University of Applied Sciences, Bahnhofstraße 61,
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planner and waypoint-following controller are integrated to
efficiently guide the robot to each detected weed, while
considering the different robot and environmental constraints.

However, the order in which the targets should be visited
is not determined a priori. Hence, the objective of the global
path planner is to generate a feasible path of minimum
length that efficiently visits all the targets. The problem
of determining the order of waypoints to minimize travel
distance is typically formulated as an Euclidean Traveling
Salesman Problem (ETSP). However, solving the ETSP alone
does not consider the vehicle’s non-holonomic constraints or
environmental constraints, such as avoiding damage to soil
and healthy grass by preventing arbitrarily sharp turns in
the path. Therefore, the planner has to consider curvature
constraints, by generating a minimum length path making
use of Dubins curves instead of straight line segments. This
formulation, known as the Dubins Traveling Salesman Prob-
lem (DTSP), extends the classical ETSP to non-holonomic
vehicles with a minimum turning radius constraint [20].

While the DTSP based planner provides a feasible global
path to guide the robot towards each waypoint, a local
planner and controller is essential for ensuring safe and adap-
tive navigation in dynamic environments and computing the
necessary control input. The presence of static obstacles and
dynamic agents, such as animals, human workers or other
robots operating in the field, requires real-time local path
replanning. To this end, Nonlinear Model Predictive Control
(NMPC) is employed as both the local path planner and
waypoint following controller within the same framework.

A. Related Work

Various formulations and extensions of the DTSP and
NMPC have been presented in the literature, each with its
own advantages and trade-offs. Selecting the right com-
bination of DTSP and NMPC formulations is crucial for
achieving efficient and reliable navigation in agricultural
environments. The choice directly impacts the optimality of
the generated paths, the overall motion control objectives,
and the ability to meet specific task requirements while
adhering to overall system’s constraints.

Approaches to solving DTSP primarily differ in how they
determine the ordering of waypoints and compute the asso-
ciated orientations. These differences influence the accuracy
of the near optimal solution, and the computational effort.
Similarly, NMPC formulations vary in terms of cost func-
tion design, constraints handling, and real-time performance,
making the selection process highly application-dependent.
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This work emphasizes the importance of choosing the
most suitable DTSP and NMPC formulations tailored to
agricultural applications, balancing global path feasibility,
motion planning adaptability, and considering real-world
operational constraints.

1) DTSP-based Global Path Planning: In [3] Dubins
introduced a method for determining the shortest path in a
2D space, given curvature constraints as well as the entry and
exit orientations between two points as input. The resulting
path consists of a combination of straight line segments
and arcs with radii that adhere to the vehicle’s curvature
constraints.

The DTSP was first introduced by [20]. In this extension
of the classical TSP, the path connecting any two points must
be a Dubins curve and two curves that meet at the same point
must share the same orientation.

The core distinctions between methods addressing the
DTSP lie in how they determine the ordering of the way-
points and calculate the orientations associated with the
points. Interested readers are referred to the comprehensive
survey [13] for a detailed review of the various routing
methods.

Existing literature mostly adopted a decoupled approach
for route generation [20], [12], [18], [14]. Thereby, first,
the visiting sequence is determined solving the ETSP. Then,
the vehicle’s orientation at each point is defined, for ex-
ample, using the Alternating Algorithm (AA) [20]. Finally,
the waypoints are connected with Dubins curves. However,
relying solely on the Euclidean distance metric to define the
visit order does not necessarily yield efficient results when
using Dubins curves for path generation. This approach can
lead to excessive circular maneuvers, especially in dense
waypoint configurations typical of autonomous weed control
applications. Since the optimization of waypoint coordinates
and headings is inherently coupled, decoupling them com-
promises optimality [23]. As a result, a tour based solely
on the ETSP ordering cannot achieve an approximation ratio
better than O(n) (i.e., the best solution is within a factor of
n of the optimal solution) see [17].

In the coupled approach, the sequence is determined by
directly using the lengths of the Dubins curves between pairs
of points. However, the main challenge here is to find the
right mechanism to determine the entry and exit orientations
without even having a predefined sequence of points. In [10],
the orientations of all points are initially set to zero (or
a fixed random value), and all interconnecting curves are
calculated and connected to form a complete graph. An
instance of the Asymmetric TSP (ATSP) is then solved to
find the shortest path in this graph. This method was later
extended to include a complete heading discretization [9].
The technique involves selecting a finite set of k possible
headings at each waypoint. A graph is created with n clusters,
each representing a waypoint and containing k nodes that
correspond to different headings. Subsequently, the Dubins
distance between configurations of node pairs from different
clusters is computed. Finally, a tour through all clusters, con-
taining exactly one point per cluster, is then determined. A

logarithmic approximation ratio O(log(n)) for this ATSP can
be achieved by directly solving the problem using available
algorithms implementations, such as those described in [7],
[5], [8].

In both DTSP formulations and most global planners in
general, solutions are computed under tight time constraints,
often resulting in suboptimal paths based on simplified
models. Consequently, there is considerable room for im-
provement by integrating appropriate motion planning and
control systems to further locally optimize the global path.

2) NMPC-based Motion Planning: The fundamental prin-
ciple of MPC is to use the system’s model to forecast
its future behavior and optimally adjust control actions by
solving a constrained optimization problem over a receding
horizon at each sampling time [19], [6]. By minimizing a
cost function that incorporates possible nonlinear multi-input
multi-output (MIMO) system dynamics along with state and
input constraints, NMPC has proven to be a promising
approach for various applications, including stabilization,
tracking, and motion planning of mobile robots in unstruc-
tured and dynamic environments [16], [2], [22], [11].

In automated weed control applications, the primary ob-
jective is for the robot to reach and stop at each designated
waypoint. This is ensured by making the state corresponding
to the desired pose a stable attractor of the feedback control
loop. A conventional approach to ensure this with NMPC
involves enforcing terminal costs and/or terminal region
constraints near the desired set-point. However, when the
set-point is located at relatively long distance from the
robot, the prediction horizon required becomes prohibitively
long for practical applications. An alternative strategy is
to reformulate the problem as one of path following by
generating a global path that connects all waypoints and then
following this path piece-wise [4], [25], [16].

In the considered application, as in many other appli-
cations, the goal is to reach the target while satisfying
constraints rather than strictly following a specific path.
As noted in Section I-A.1, global planners often yield
suboptimal paths when computed in finite time, particularly
under kinematic and dynamic constraints. Therefore, exactly
following these paths can complicate motion control and
make it impossible when real-time obstacle avoidance is
required. Instead, a flexible approach that allows the motion
planner to dynamically optimize the global path and find
shortcuts is preferred.

A novel NMPC formulation, proposed in [11], guaran-
tees convergence to a desired target while ensuring closed-
loop stability, adherence to system constraints, and collision
avoidance with obstacles. The method optimally selects an
artificially generated reference set-point, dynamically ad-
justed along the global reference path, which guides the
robot without requiring strict path following. This artificial
reference is used to define feasible stabilizing terminal con-
straints.

This work adapts and integrates the coupled DTSP for-
mulation from [9] with the NMPC-based motion planner
from [11] to enable an automated, robot-based weed control
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application. The resulting integrated framework addresses
a critical gap in applied research by combining a multi-
waypoint, curvature-constrained DTSP-based global planner
with an advanced NMPC-based local motion planner and
controller tailored for agricultural robots.

The remainder of the paper is organized as follows. Sec-
tion II details the proposed system, explaining the integration
of the DTSP-based global path planner with the NMPC-
based local path planner and waypoint follower. Section III
describes the simulation setup and presents a comparative
analysis of the results. Finally, Section IV concludes the
paper and outlines directions for future work.

II. PROPOSED NAVIGATION AND CONTROL SYSTEM

A. System Overview

The proposed system integrates a two-layer architecture
for autonomous navigation. The global path planner, based
on the coupled DTSP formulation, processes unordered
multi-waypoint coordinates to compute an optimal sequence
of curvature-constrained Dubins paths connecting these way-
points. These paths minimize travel distance while adhering
to curvature constraints tailored specifically for agricultural
applications, where sharp turns can damage the soil and
grass. The NMPC-based local path planning and waypoint
following algorithm utilizes the resulting global Dubins
path to ensure precise convergence to each waypoint while
respecting different system constraints.

B. DTSP Algorithm

Given W waypoints in a 2D space, the DTSP aims to
determine the shortest path that connects all points while
adhering to curvature constraints. Consequently, the path
between any two points should be a Dubins curve, and
the curves meeting at the same point must share the same
orientation.

The following steps present the DTSP routing problem
based on [9]:

1) For each of the W target points, select K candidate
headings (e.g., k 2π

K for k ∈ {0,1, ...,K−1}).
2) Represent each target as a cluster of K nodes, where

each node corresponds to a configuration qi = (pi,θi)
with position p and a candidate heading θ . The total
number of nodes is nK.

3) For each pair of nodes qi and q j that belong to different
clusters (i.e., different targets), compute the Dubins
curve with minimum distance Dρ(qi,q j). This curve
is parameterized by the minimum turning radius ρ ,
defines the cost for traveling from a specific configu-
ration at target i to a different one at target j.

4) Arrange the computed Dubins distances into a cost
matrix M of size N×N, where N = nK.

From the matrix M, one can construct an ordered sequence
QΣ = (qΣ(0),qΣ(1), . . . ,qΣ(N−1)) which represent some per-
mutation Σ of configurations qΣ(i) = (pΣ(i),θΣ(i)) of a com-
plete tour of the mobile robot, after excluding transitions
between configurations within the same target.

Based on this representation, the corresponding objective
function can be formulated as follows:

minimize
θ ,Σ

Lρ(QΣ) (1)

Where the cost function is defined as:

Lρ(QΣ) =Dρ(qΣ(N−1),qΣ(0))+
N−2

∑
i=0

Dρ(qΣ(i),qΣ(i+1)) (2)

C. NMPC Algorithm

The robot’s motion is governed by a discrete-time, nonlin-
ear dynamic system, described by the following difference
equation:

x(n+1) = f (x(n),u(n)), (3)

where f : Rnx ×Rnu → Rnx is a continuous function that
models the system dynamics. Here, x(n) ∈ Rnx represents
the system state, while u(n) ∈ Rnu denotes the control input
at the sampling time tn, where n = 0,1,2, . . . .

The global path Pd generated from the DTSP-based plan-
ner can be represented as a sequence of path segments con-
necting each pair of consecutive waypoint poses as follows:

Pd = (p0, p1, . . . , pW−1), (4)

where W is the total number of waypoints. Each path
segment pw is described as a continuous function:

pw : [0,1] 7→ Rnx , (5)

where pw(0) represents the initial configuration of the path
segment, while pw(1) represents the target configuration.

The following NMPC formulation used in this work was
originally proposed in [11]. This approach ensures that
both constraint satisfaction and convergence to a desired
target can be guaranteed. Unlike traditional path-following
approaches, this method does not require the robot to strictly
follow the reference path pw. Instead, the path only serves
as a guidance mechanism to identify a suitable terminal
constraint, which guarantees that at each control step, the
local solution computed by the NMPC algorithm can be
suitably extended to reach the target pose. This is achieved
by introducing an artificial reference, which serves as an
intermediate target configuration and is optimized within the
NMPC optimization problem.

In the following, the predicted state and control input
trajectories over the finite prediction horizon N are denoted
as x̄(·)∈ X and ū(·)∈U , where X and U represent the set of
admissible states and inputs respectively. These trajectories
are defined as

x̄(·) = (x̄(1), x̄(2), . . . , x̄(N)), (6)
ū(·) = (ū(0), ū(1), . . . , ū(N−1)). (7)

The artificial reference is chosen along the current path
segment pw. With the additional optimization variable s̄ ∈
[0,1] and the path pw, this artificial reference is given by
pw(s̄).
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The MPC cost function is defined by

JN(x0, x̄(·), ū(·), s̄) =
N−1

∑
k=0

ℓ(x̄(k), ū(k))+Vo(s̄), (8)

where the stage cost ℓ : Rnx+nu → R≤0 and offset cost V0 :
[0,1]→ R≥0 are positive definite functions. We define the
stage cost

ℓ(x̄(k), ū(k)) = ∥x̄(k)− p(s̄)∥4
Q +∥ū(k)∥4

R , (9)

where Q and R are positive definite weighting matrices
that penalize the deviation of the predicted states from the
intermediate artificial reference pose and penalize excessive
control effort, respectively.

The offset cost Vo(s̄) ensures that the artificial reference
progresses forward toward the final target pose pw(1) as it
penalizes the distance along the path between the current
artificial reference and the target pose. Is defined by

Vo(s̄) = qs(1− s̄)2, (10)

where qs is a positive weighting scalar that penalizes the
deviation between the final reference index 1 and the current
optimal intermediate artificial reference s̄.

Finally, the NMPC algorithm at each sampling time tn,
n = 0,1,2, . . . , can be described as follows:

1) Measure the state x(n) ∈ X of the robot.
2) Set x0 = x(n), solve the optimal control problem (OCP)

defined by:

minimize
ū(·), s̄

JN(x0, x̄(·), ū(·), s̄) (11a)

s.t. x̄(0) = x0 (11b)

x̄(k+1) = f
(
x̄(k), ū(k)

)
, k ∈ [0, N−1] (11c)

x̄(k) ∈ X , k ∈ [1, N] (11d)
ū(k) ∈U, k ∈ [0, N−1] (11e)
x̄(N) = p(s̄) (11f)

s̄ ∈ [0,1] (11g)

B
(
x̄(k)

)
∩Oi =∅, k ∈ [1, N], i ∈ [1, No] (11h)

3) Denote the obtained optimal solution u∗(·), x∗(·), s∗.
4) Apply the control input u(n) = u∗(0) to the system.
5) Repeat until the robot reaches the final waypoint, then

start over using the next path segment.
General constraints on states and control inputs for non-

linear systems are incorporated into the OCP in the form of
set membership conditions, as defined in (11d) and (11e),
respectively. Furthermore, static obstacle avoidance can be
also considered in the optimization problem by considering
constraints (11h). Where B represents the robot’s footprint,
and Oi denotes the i-th obstacle in the environment.

III. RESULTS

The proposed system is evaluated in a simulated agricul-
tural scenario, where a mobile robot navigates to a set of tar-
get weeds. The results are presented in terms of path planning
and waypoint-following performance metrics, including path

length, target reaching, smoothness, and curvature constraints
adherence. A comparative analysis is conducted between
the proposed DTSP planner with angle discretization and
the decoupled approach based on the Alternating Algorithm
(AA), see Section I-A and [20]. The results demonstrate the
effectiveness of the integrated global planner and NMPC
methods adapted in this work.

A. Simulation Setup
The simulation scenario consists of a 2D field with a set

of target weeds distributed across the area. In this phase, the
global path planner generates a Dubins path that connects
all target weeds in the field, while the NMPC controller
optimizes the robot’s trajectory to reach each detected weed
accurately while adhering to constraints from the robot’s
kinematics and the environment.

After formulating the DTSP and transforming it into an
ATSP, the problem was solved using the LKH optimizer,
which is an effective implementation of the Lin-Kernighan
traveling salesman heuristic [7].

The NMPC problem is symbolically formulated in MAT-
LAB using the CasADi framework [1]. To ensure a smooth
and continuously differentiable path function, the global
Dubins reference path is first sampled at 5 cm intervals and
then converted into a CasADi function, p(s), using CasADi’s
linear interpolation utilities. This function is parameterized
over the normalized domain s ∈ [0,1].

In this agricultural application a differential-driven mobile
robot model as described in [21] is utilized:

ẋ =




ẋ
ẏ
θ̇


=




vcos(θ)
vsin(θ)

ω


 (12)

The robot’s control inputs are defined as u = [v ω]T , where v
and ω represent the linear and angular velocity respectively.
The output states of the robot are given by x = [x y θ ]T ,
which represent the 2D pose of the robot, including its
position (x,y) and orientation θ . This mathematical model
is employed for both the simulation and prediction models,
without taking into account possible process or measurement
noise.

The prediction model is integrated using the fourth-order
Runge-Kutta (RK4) method to compute the state evolution
over each discretization interval. The continuous-time OCP
is discretized via direct multiple shooting, which converts it
into a nonlinear programming (NLP) problem that is then
solved with the Interior Point Optimizer (IPOPT) [24].

The NMPC problem is parameterized by a sampling time
of ∆t = 0.1 seconds and a prediction horizon of N = 20. The
weight matrices are defined as

Q = diag(0.1, 0.1, 0.01),
R = diag(0.1, 1.0),

qs = 104.

The minimum turning radius constraint, required in this
application, is enforced by the inequality constraint

v̄(k)≥ rmin|ω̄(k)|
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which is added to the optimal control problem. Furthermore,
control inputs box constraints

umin ≤ ū(k)≤ umax

are taken into account to limit the robot’s linear and angular
velocity. Finally, to ensure smooth motion, in such agricul-
tural application it is convenient to also consider constraints
on the rate of change of control inputs (i.e., acceleration of
the robot)

∆umin ≤ ū(k)− ū(k−1)≤ ∆umax.

The robot considered in this work has maximum linear
velocity of 0.5 m/s and a maximum angular velocity of 1.9
rad/s. The rate of change constraints are defined as a fraction
of the maximum control values, allowing adaptation based
on operational requirements (e.g., umax/n), where n∈ [1, No]

B. Simulation Results

The test scenario illustrated in Fig. 1 evaluates the per-
formance of the proposed DTSP global path planner (Fig.
1a) against a DTSP planner from the decoupled category
(Fig. 1b), as discussed in Section I-A. This planner utilizes
the Alternating Algorithm (AA) to determine the waypoints
orientations, whereas the DTSP method applied in this work
incorporates 10 angle discretization levels for each waypoint.
Both planners were tested on the same dataset, consisting
of 150 target weeds distributed across approximately 20×60
square meters field, with a vehicle turning radius constraint
of 0.5 meters.

In both cases, the proposed NMPC algorithm was able
to optimize the reference paths and accurately reach each
waypoint, while still respecting the turning radius constraints
required to protect the soil and grass from damage. A steady-
state error of no more than 0.05 meters was achieved at each
target pose.

The proposed DTSP planner presented in Fig. 1a, achieved
a total path length of 323.49 meters, outperforming the
decoupled approach shown in Fig. 1b, which resulted in
a path length of 384.58 meters, i.e. nearly 19% longer.
For reference, the shortest possible path computed by only
solving the ETSP without considering curvature constraints
was 314.20 meters.

As observed in Fig. 1b, the path generated by the DTSP
planner using the alternating algorithm is suboptimal, char-
acterized by numerous loops that are necessary to reach the
next waypoint given the curvature constraints. In contrast,
the proposed DTSP planner with 10 angle discretization
levels, as shown in Fig. 1a, leads to a different order of
the waypoints, allowing for a significantly smoother path.
This path connects all targets with hardly any redundant
loops, which can effectively guide the NMPC towards the
targets. Experiments with angle discretization, starting from
three orientations per waypoint and incrementally increasing,
showed that higher discretization levels generally reduced
path cost but also increased computational time. This trade-
off depends on factors such as the density of targets and the
turning-radius constraints. Furthermore, the benefits of using

a coupled approach quickly grow with a higher target density
and a larger minimum turning radius.

As depicted in Fig. 1, the robot successfully navigates
all target weeds accurately while adhering to curvature
constraints. Thereby the proposed NMPC does not strictly
follow the reference path but locally optimizes the trajectory
based on the NMPC cost function. E.g., to protect the soil,
tight turns are discouraged, leading to wider turns to smooth
out tight turns from the global planner, as long as this
does not significantly increase the path length. On the other
hand, it takes shortcuts by making tighter turns when this
helps to significantly reduce the travel distance. This local
planning behavior of the NMPC can be tuned by adjusting
the prediction horizon length, the cost function weights, and
the allowable turning radius.

IV. SUMMARY AND OUTLOOK

This paper has presented a practical autonomous naviga-
tion framework for non-holonomic mobile robots in agri-
cultural applications. Given target coordinates, the proposed
framework integrates a global path planner based on a
coupled DTSP formulation with an NMPC-based motion
planning and control strategy to generate feasible reference
paths and compute optimal control inputs that satisfy both
the robotic system constraints and the operational demands
of the agricultural environment.

The system’s performance was validated through a com-
parative analysis with a reference path generated by a global
planner based on a decoupled DTSP formulation, demon-
strating the advantages of the applied DTSP approach and its
effectiveness as a reference input for the local motion planner
and controller. By optimally selecting a feasible artificial
reference and corresponding terminal constraint along the
planned path, the NMPC methodology smooths out sharp
turns, identifies efficient shortcuts, and ensures precise way-
point navigation while maintaining overall system stability
under various constraints.

Future research will focus on enhancing local motion plan-
ning by considering complex obstacle scenarios, including
moving humans, animals, other robots and machinery into
the NMPC’s OCP formulation for safe, real-time adaptation
to moving agents. Experimental field validation is planned
under varying terrain conditions to address challenges arising
from process and measurements noise, bridging the gap
between simulation and practical agricultural robotics.

REFERENCES

[1] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi: A software framework for nonlinear optimization and opti-
mal control,” Mathematical Programming Computation, Mar. 2019.

[2] B. Brito, B. Floor, L. Ferranti, and J. Alonso-Mora, “Model Predictive
Contouring Control for Collision Avoidance in Unstructured Dynamic
Environments,” IEEE Robotics and Automation Letters, vol. 4, no. 4,
pp. 4459–4466, Oct. 2019.

[3] L. E. Dubins, “On Curves of Minimal Length with a Constraint on
Average Curvature, and with Prescribed Initial and Terminal Positions
and Tangents,” American Journal of Mathematics, vol. 79, no. 3, pp.
497–516, 1957.

Proceedings of the Austrian Robotics Workshop 2025

https://doi.org/10.34749/3061-0710.2025.17 107
Creative Commons Attribution
4.0 International License



D
ra

ft
-10 0 10 20 30 40 50

x [m]

30

40

50

60

70

80

y 
[m

]

Waypoints Following

Reference Path
Actual Path
Weeds Positions

(a) Reference path generated using the proposed coupled formulation of
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(b) Reference path generated using a decoupled formulation of the
DTSP-based planner with the Alternating Algorithm for angle selection.
This approach results in suboptimal paths with redundant circular loops.

Fig. 1: Comparison of Dubins tours (red arrows) for approximately 20 m × 60 m field containing 150 target weeds (green
stars), with a vehicle turning radius of 0.5 m. The proposed coupled DTSP-based planner (a) chooses a different order
of the waypoints, thereby allowing for a smoother path, whereas the decoupled DTSP-based planner (b) results in a less
optimal path with redundant loops. In both cases, the NMPC closed-loop state trajectory (blue arrows) successfully reaches
all waypoints while locally optimizing motion by smoothing sharp turns and taking efficient shortcuts when beneficial.
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Comparison of neural networks road detection in off-road environments

Jakob Oberpertinger1, Matthias Eder1 and Gerald Steinbauer-Wagner1

Abstract— As unmanned ground vehicles (UGVs) are more
frequently deployed in unstructured environments, there is a
growing need for robust road and terrain detection systems.
The ability to navigate autonomously in challenging terrains
depends on the effectiveness of computer vision models.

Off-road environments encompass rugged terrain, forest
roads, agricultural fields, and more, characterized by dynamic
changes and unpredictable obstacles. UGVs must discern driv-
able ground to enable effective navigation while identifying and
circumventing obstacles in real-time.

This paper investigates different sensor-based and neural
network-driven approaches to address these challenges, fo-
cusing on the critical task of identifying forest roads in off-
road environments. Using different sensors, we assess their
effectiveness in different environmental conditions through a
comprehensive comparative analysis of three neural network
architectures. Our results highlight the strengths and limitations
of different sensor modalities and neural network models. They
provide insight into their performance under adverse conditions
such as overexposed images, complex shadows, and dense
vegetation on forest roads. This research provides valuable
insights into developing robust off-road navigation systems
essential for advancing autonomous ground vehicle technology.

I. INTRODUCTION

New application areas for unmanned ground vehicles
(UGV), such as disaster response or forestry, have led to the
need for safe navigation both on and off the road. Effective
navigation is essential; it requires not only the ability to
identify clear and accessible routes but also the foresight
to avoid potential obstacles. Mastering this skill enhances
safety and ensures a smoother journey every time. However,
research in unstructured environments still lags behind that
in structured environments [9]. Off-road environments for
anmanned ground vehicles (UGVs) present unique chal-
lenges compared to traditional on-road environments. These
environments vary widely, including rugged terrain, forest
roads, agricultural areas, etc. Off-road environments can
experience rapid changes, such as the appearance of lighting
and weather conditions, temporary obstacles, or changes in
terrain conditions. UGVs must be able to adapt in real-time
to meet these dynamic challenges. The absence of clearly
defined routes makes it challenging for an unmanned ground
vehicle (UGV) to navigate to its destination. For a UGV to
find its destination, it must make two important decisions.
Firstly, it needs to detect accessible routes that it can safely
traverse. Secondly, it must detect obstacles so that it can

1Jakob Oberpertinger, Matthias Eder, and Gerald Steinbauer-Wagner are
with the Institute of Software Technology, Graz University of Technology,
Graz, Austria. {jakob.oberpertinger, matthias.eder,
steinbauer}@tugraz.at

safely avoid them. There are many different approaches
to solving these two challenges, using different sensors or
neural network architectures.

Our research focuses on identifying navigable terrain in
off-road environments, essential for safe and efficient navi-
gation in unknown terrain. To address this challenge, we are
undertaking a comprehensive comparison of three different
neural network architectures using a variety of sensors,
including RGB and depth images from stereo cameras and
point clouds from lidar sensors. By exploring the effective-
ness of different sensors, we aim to identify their respective
strengths and limitations. This investigation goes beyond
pure theoretical analysis, as we are carefully testing the limits
of these networks under harsh environmental conditions.
These conditions are characterized by significant challenges
such as fluctuating sunlight, complex shadow patterns, and
dense vegetation. The interplay of sunlight and shadows
poses a significant hurdle for camera sensors and neural
networks, especially if not adequately trained. In addition,
vegetation poses challenges. Forest roads exhibit patches of
grass in the center, which complicates the identification of
navigable pathways.

The remainder of this paper is structured as follows: Sec-
tion II discusses current research topics in path detection in
off-road environments. Section III presents the three different
neural networks evaluated in Section IV. Section V concludes
the paper.

II. RELATED RESEARCH
A. Methods

Unmanned Ground Vehicles (UGVs) operating in off-
road environments require robust road detection systems
for safe and efficient navigation. Recent advancements in
neural networks have significantly improved off-road path
detection capabilities. However, developing a reliable and
stable network for this purpose and selecting the appropriate
sensors poses notable challenges. Ilas [8] outlines the key
sensor technologies UGVs use to make real-time decisions
while monitoring their surroundings. The study explores the
various sensors employed across different environments and
vehicle prototypes, evaluating the advancements in sensor
technology.

Another important technology in off-road road detection
is Convolutional Neural Networks (CNNs). CNNs excel in
capturing spatial hierarchies of features, making them well-
suited for image-based tasks. Researchers have explored
various CNN architectures tailored for off-road scenarios.
The work of Holder et al. [7] focuses on transfer learning,
taking a pre-trained CNN designed for urban road scenes
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and retraining it to classify off-road scenes. The analysis
involves assessing the network performance during various
stages of training and exploring different levels of prior
training on subsets of off-road data. The study compares
the CNN approach with a traditional feature-driven Support
Vector Machine (SVM) classifier, demonstrating state-of-
the-art results in the challenging problem of off-road scene
understanding.

Neural Networks using Lidar data have become a signifi-
cant advancement in off-road road detection, offering depth
information that allows for a more nuanced understanding
of the environment. Zhong et al. [14] present a method
known as LRTI, designed for identifying drivable areas in
challenging off-road scenes. The complexity of this task
arises from unstructured class boundaries, irregular features,
and noise. By leveraging three-dimensional LiDAR data and
a bird’s eye view (BEV) perspective, LRTI utilizes texture
information derived from LiDAR reflection data. The method
incorporates an instance segmentation network to effectively
learn this texture information, facilitating the identification
of drivable areas. A multi-frame fusion strategy is employed
to improve reliability. LRTI successfully achieves real-time
processing on unmanned ground vehicles (UGVs).

Nate Haddad [5] discusses the challenges of training large
deep learning algorithms due to the need for a substan-
tial training dataset and computing power. Transfer learn-
ing, a method of transferring knowledge from one domain
to another, is introduced as a solution to avoid training
from scratch. The focus is on applying transfer learning to
large encoder-decoder-style deep neural networks, specifi-
cally examining its impact on semantic segmentation tasks.
DeepLabv3+, a state-of-the-art architecture from 2018, is
highlighted for its efficiency in incorporating techniques from
the 2016 Xception model [4].

B. Datasets

Chen Min et al. introduce the first off-road freespace
detection dataset, called the ORFD dataset. Recognizing the
importance of free space detection in autonomous driving
technology, the authors highlight the limitations of existing
deep learning methods, which primarily focus on urban road
environments. To address this gap, they present the ORFD
dataset, comprising 12,198 LiDAR point clouds and RGB
image pairs collected in various off-road scenes, weather
conditions, and light conditions. The authors propose a novel
neural network, OFF-Net, which utilizes a transformer archi-
tecture to integrate local and global information, catering to
the needs of a large receptive field for free space detection.

Peng et al. [10] address the significance of semantic scene
understanding for robust autonomous navigation, particularly
in off-road environments. Acknowledging the reliance of
recent 3D semantic segmentation advancements on extensive
training data, the authors identify a gap in existing datasets,
which are either urban-focused or lack multimodal off-
road data. The authors introduce RELLIS-3D, a multimodal
dataset collected in an off-road setting to bridge this gap. The
paper evaluates state-of-the-art deep learning semantic seg-

mentation models on RELLIS-3D, revealing that the dataset
introduces challenges distinct from urban environments.

The RUGD dataset [13] provides semantic annotations
for unstructured outdoor environments, supporting off-road
autonomous navigation. The dataset from a mobile robot
platform includes video sequences with dense pixel-wise
annotations for terrain classification and obstacle detection. It
features 24 semantic categories, including eight terrain types,
to enhance path planning and localization in environments
lacking structured cues.

III. EVALUATED ARCHITECTURES

In this chapter, we evaluate three previously published
neural network architectures, selected for their diverse input
modalities and relevance to understanding the off-road scene.
Our aim is not to propose new architectures, but to assess
how well existing state-of-the-art segmentation methods gen-
eralize to off-road environments, particularly in challenging
conditions such as forest roads, uneven terrain, and under-
exposed regions. The motivation behind the selection of
these three models is based on their complementary input
representations and processing strategies:

• OFF-Net: Chosen for using surface normal maps and
a transformer-based architecture, offering a high-level
representation of terrain structure. It is designed to lever-
age geometric cues from RGB-D input for improved
scene segmentation.

• DeepLabV3+: A well-established CNN-based model
known for its high segmentation accuracy and strong
performance across various domains. It is particularly
beneficial when working with limited or domain-specific
training data.

• SalsaNext: A LiDAR-based semantic segmentation
model operating directly on 3D point clouds. Its se-
lection allows us to evaluate how pure LiDAR-based
perception compares to image-based methods in un-
structured off-road scenes.

This comparative evaluation’s significance lies in under-
standing these architectures’ behavior under real-world de-
ployment constraints. By testing on our dataset, comprising
RGB imagery, stereo-derived depth, and LiDAR scans col-
lected in diverse environments, we aim to provide practical
insight into each network’s robustness and adaptability. This
evaluation not only identifies the performance boundaries
of each modality but also informs future design decisions
for autonomous navigation systems in GNSS-denied and
visually ambiguous terrain.

In the following section, we will present the concept of the
comparison between the three neural networks, which are:

• Off-Road-Freespace-Detection (ORFD)
• DeepLabv3+
• SalsaNext using RELLIS-3D dataset

The three architectures and their design are presented in
this chapter in detail.
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Fig. 1: The architecture of the OFF-Net [12].

A. Off-Road-Freespace-Detection (ORFD)

This architecture was presented by Chen Min et al. [12]
2022, which addresses the critical aspect of free space
detection in off-road environments for autonomous driving.
The paper presents a novel neural network, OFF-Net, which
uses a transformer architecture to integrate local and global
information, addressing the need for expansive receptive
fields in free-space detection tasks, which are critical for
accurate detection. Figure 1 shows an overview of the
presented OFF-Net. As can be seen in the figure, the network
combines two pieces of information: the RGB image and
the corresponding surface normal. The paper’s authors use
LiDAR point cloud information to calculate the surface
normal for each image. In our case, we calculate the surface
normal from a dense depth image provided by the ZED2
stereo camera1. The transformer encoder can extract the
features from these two pieces of information, and the
transformer decoder predicts the free space. The paper also
presents the dataset they have created for off-road freespace
detection, called the ORFD dataset. The dataset includes off-
road environments such as forests, farmland, and countryside
with different weather conditions. The results demonstrate
that SNE-RoadSeg, utilizing surface normals instead of depth
information, outperforms FuseNet in free space detection.
Furthermore, the newly proposed OFF-Net achieves even
higher accuracy, surpassing FuseNet by 10.8% in F-score
and 16.3% in mIOU. OFF-Net, employing the Transformer
framework, efficiently captures local and global information
while maintaining real-time processing capabilities, 7 times
smaller and 2.7 times faster than SNE-RoadSeg [12].

B. DeepLabV3+

The second architecture, DeepLabv3+, is a simple but
effective decoder module to improve segmentation results.

1https://www.stereolabs.com/docs

Chen et. al. [1] describes this architecture as follows: Mul-
tiple downsampling of CNN results in a smaller feature
map resolution, which leads to lower prediction accuracy
and loss of boundary information in semantic segmentation.
Similarly, aggregating the context around a feature helps to
better segment it, which is achieved with sparse convolutions.
DeepLabv3+ helps to solve these problems. The architecture
can be seen in Figure 2. To save time and in the absence of a
large dataset, we used a pre-trained model from the paper by
Nate Haddad [5], who proposes to extend the application of
a pre-trained DeepLabv3+ model to the challenging domain
of off-road perception. The authors successfully employ
transfer learning techniques using the Yamaha-CMU Off-
Road Dataset for semantic segmentation of off-road images,
showcasing the model’s adaptability and effectiveness in a
different domain. The Yamaha-CMU Off-Road Dataset [11]
consists of 1076 images collected in different environments
using three different sensors. It was labeled using eight
classes (sky, rough trail, smooth trail, traversable grass, high
vegetation, non-traversable low vegetation, and obstacle).
The model takes an image as an input parameter, which is
provided by the ZED2 stereo camera mounted on the front
of the robot.

Fig. 2: The architecture of the Deeplabv3+ [1].

C. SalsaNext

Last, we used a model using LiDAR data as the in-
put parameter. Peng et al. [10] introduced in their pa-
per SalsaNext, an advanced model designed for real-time
uncertainty-aware semantic segmentation of full 3D LiDAR
point clouds. The authors made some major improvements
to the already existing model SalsaNet. Some improvements
are as follows: they replaced the ResNet encoder blocks
with a new residual dilated convolution stack with gradually
increasing receptive fields and added the pixel-shuffle layer
in the decoder. Finally, we implemented a model that utilizes
LiDAR data as its input parameter. In their paper, Peng et al.
[10] introduced SalsaNext, an advanced framework designed
for real-time, uncertainty-aware semantic segmentation of
complete 3D LiDAR point clouds. The authors made sig-
nificant enhancements to the existing SalsaNet model. No-
table improvements include the substitution of the ResNet
encoder blocks with a novel residual dilated convolution
stack that features progressively increasing receptive fields
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and incorporates a pixel-shuffle layer in the decoder. They
also switch from stride convolution to average pooling and
apply central dropout treatment. To directly optimize the
Jaccard index, they combine the weighted cross-entropy loss
with Lovasz-Softmax loss and inject a Bayesian treatment to
compute the epistemic and aleatoric uncertainties for each
point in the cloud [2]. The improved architecture can be
seen in Figure 3. The authors of the paper [10] present the
dataset RELLIS-3D, a collection of off-road environments
captured at the Rellis Campus of Texas A&M University. The
RELLIS-3D dataset comprises a large set of raw sensor data,
including color camera images, laser scans, high-precision
global positioning measurements, inertial measurements, and
depth images from a 3D stereo camera, and is labeled
in 20 classes. The results show that SalsaNext achieves a
higher mIoU of 43.07% compared to KPConv’s 19.07%,
which is significantly lower than their performance on the
SemanticKITTI dataset, which was 59.5% mIoU and 58.8%,
respectively. The imbalance in the point cloud dataset poses
a significant challenge for both algorithms, with KPConv
showing a more pronounced degradation. Despite attempts
to mitigate the imbalance through sampling strategies during
training, such efforts only marginally improved the results
by 0.6% mIoU [10].

As the classes did not include forest roads, we selected
a subset of the 20 available classes, focusing only on those
relevant to detecting passable ground. This subset includes
dirt, grass, puddles, asphalt, and mud.

Fig. 3: The architecture of the SalsaNext [2].

After implementing, we conducted rigorous testing for
various environments and sensors. The following chapter
describes the results and evaluations of these tests in detail.

IV. EVALUATION
Autonomous navigation in off-road scenarios presents

unique challenges that demand robust and accurate percep-
tion systems.

A. Data Generation
To evaluate the three networks and generate test data, we

are utilizing the robots, Mercator [6], developed by Graz Uni-
versity of Technology, and Husky2, developed by Clearpath.

2https://clearpathrobotics.com/
husky-unmanned-ground-vehicle-robot/

Mercator is a universal off-road platform developed for
autonomous navigation in disaster response scenarios. It is
a four-wheeled mobile platform with double Ackermann
steering, an onboard computer, and a mounting frame for
various sensor setups. Husky is a medium-sized robotic
development platform with a large payload capacity. It is a
customizable robot with the ability to add multiple sensors.
The assessment spanned diverse environments, ranging from
optimal visibility forest roads to challenging off-road terrains
covered with grass.

To collect and record data for analysis, we equipped
the two unmanned robots mentioned above with a ZED2
stereo camera3 and 3D LiDAR scanners. Our data collection
spanned a variety of environments and locations, including
mountainous areas, rural landscapes, and forest roads in
Styria, Austria, capturing different weather and terrain con-
ditions. We selected challenging scenarios from the collected
data for network testing, including varying light conditions,
narrow forest roads, off-road paths with grass tracks, and
grass-covered terrain, as shown in Figure 4. The ground truth
annotation of the data was conducted manually.

B. Network Performance Metrics:

To evaluate the three different models, we have used the
widely used mean intersection-over-union (mIOU) metric
[3], which is given by

mIOU =
1
C

C

∑
c=1

T Pc

T Pc +FPc +FNc
(1)

where C is the number of classes, and TP (=true posi-
tive), FP (=false positive) and FN (=false negative) are the
predictions for class c. The analysis focused on two classes:
traversable and non-traversable areas.

C. Quantitative Results

We chose 250 images from our generated data for a
quantitative analysis, described in IV-A. This ensures a well-
distributed selection that captures key challenges such as
lighting conditions, vegetation, and shadows.

Table I outlines the mIOU rates for each network for each
image shown in Figure 4 and the mIOU (=mean IOU). No-
tably, on the mIOU, the DeepLabV3+ model outperformed
OFF-Net by 9.64%, despite OFF-Net utilizing the surface
normal as additional information. The SalsaNext network
achieved a mIOU rate of 27.86%, emphasizing its ability
to distinguish between traversable and non-traversable areas.

Reference Green Strip Shadow Underexposed mIOU
DeepLabV3+ 95.11% 51.55% 53.29% 1.53% 76.91%

OFF-Net 73.60% 29.25% 50.60% 0.12% 67.27%
SalsaNext 30.82% 28.28% 35.53% 19.87 27.86%

TABLE I: mIOU of the three neural networks.

3https://www.stereolabs.com/docs
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D. Comparative Analysis:

Despite OFF-Net incorporating additional information, the
DeepLabV3+ model outperformed it. This raises questions
about the effectiveness of the extra data and underscores
the importance of careful feature selection and integration.
Figure 4 shows the difference between the two networks
using camera information, in which the second column shows
the ground truth in light green, the third column shows the
prediction of the DeepLabV3+ model in blue, and finally, the
last column shows the prediction of the OFF-Net network in
dark green.

The four different scenarios visualize the main problems
and limitations of the two networks. The first scenario (refer-
ence) shows a well-visible, clear, and wide forest road, which
both networks can predict quite well, with both mIOU values
higher than 70%, as shown in Table I. The next scenario
(green strip) shows an off-road divided by a grass strip.
Here, both networks have difficulty accurately delineating
the entire road and only manage to identify segments without
grass. Again, the DeepLabV3+ scores a higher mIOU value
compared to the OFF-Net.

The third scenario (shadow) shows a narrow forest path in
a partially shaded wooded area. The OFF-Net has difficulty
distinguishing between shaded and sunlit areas. However,
DeepLabV3+ shows superior performance in this respect,
suggesting that the OFF-Net model could be improved by
refining the training dataset. DeepLabV3+ detects areas at
the side of the path, which can lead to difficult or impassable
paths. If we look at the mIOU values from Table I, we can
see that DeepLabV3+ has a slightly higher mIOU value, but
if we look at the images, OFF-Net is more accurate on the
path. Last but not least, a road is completely covered with
grass, which neither network can predict. Both networks have
an mIOU value lower than 2%. It shows the networks are
not trained for this type of off-road.

E. Insights into SalsaNext Network:

While SalsaNext demonstrated its ability to distinguish
between drivable surfaces such as grass, dirt, and bush, ...
its limitation lies in its lack of specificity in identifying
true off-road. As a result, it is not a good choice for off-
road detection and, therefore, scores the worst mIOU values.
Future improvements could focus on refining the training
data to include a wider range of off-road surfaces, thereby
improving its ability to make nuanced distinctions. Figure 5
shows the predicted point cloud for different environments.
The first environment is a wide forest road; the second is a
narrow forest path.

F. Challenges and Solutions for OFF-Net:

OFF-Net faced challenges related to sun reflection and
shadows, impacting its predictions. Bright reflections and
rapid changes in brightness, especially transitioning from
shadows to sunlight, were identified as major concerns.
Moreover, the network can be improved by adding more
difficult scenarios to the training data, such as underexposure,

forest roads divided by grass strips, or fully covered roads
with grass.

V. CONCLUSION

This paper evaluated three neural net-
works—DeepLabV3+, OFF-Net, and SalsaNext—for
autonomous navigation in off-road environments using the
Mercator robot. Tests covered forest paths, narrow trails, and
grass-covered terrain, highlighting each model’s strengths
and limitations.

Future work should improve SalsaNext’s training data and
improve OFF-Net through adaptive mechanisms or filtering.
These insights support further optimization of network ro-
bustness for real-world off-road navigation.
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Fig. 4: Predictions of the image based networks DeepLabV3+ and OFF-Net.

(a) RAW Pointcloud (b) Ground Truth (c) SalsaNext

Fig. 5: SalsaNext Network prediction
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Multi Robot Route Planning for ROS2

Matthias Reicher1 and Markus Bader1

Abstract— This work presents the implementation of a multi
robot route planner based on the prioritized planning approach
as well as its integration into ROS2 and the well-known Nav2
stack. Further, a method to increase the resilience towards
uncertainty and unpredictability in timing during the execution
of found routes is introduced. These so-called routing precondi-
tions are shown to be effective on a subset of routing scenarios
and offer significant opportunity for further exploration.

Index Terms— multi robot system, path planning, ROS2,
Nav2

I. INTRODUCTION

To leverage the advantages of a multi-robot system (MRS),
large fleets of mobile robots must be able to effectively
compute routes from one point in the environment to an-
other without risking collision. This makes multi-robot-
route-planning a fundamental problem for MRS, as it lays
the groundwork for more complex behavior [3]. Many ap-
proaches to solving this problem have been discussed in the
literature, with so-called ”prioritized planning” appearing in
a significant number of publications [2]. However, up to
current knowledge, no publicly available ROS2-compatible
software packages provides an easy integration of such
functionality. This work aims to close the identified gap,
similar to the previous work of [1] on ROS, but by tak-
ing advantage of the advanced capabilities offered by the
well-known Nav2 stack. Results are presented by using a
simulated environment as shown in Fig. 1.

II. PRIORITIZED PLANNING

Prioritized Planning refers to the practice of decompos-
ing the multi-robot-route-planning problem into a series of
single-robot-route-planning (SRRP) problems. Each of the
SRRP-problems concerns itself with finding a collision-free
route for an individual robot and must take static obstacles as
well as robots for which a route has already been found into
consideration. Since routes are planned in descending order
according to some priority metric, higher-priority robots
represent dynamic obstacles in the planning space of low
priority robots.

III. IMPLEMENTED PLANNING ALGORITHM

To realize this specification of a Prioritized Planner, some
considerations need to be made: First, a planning algorithm
which is able to handle dynamic obstacles is required to solve
the individual SRRP-problems. Second, the routes generated
by the prioritized planner need to be suited for execution by
a real MRS.

1The authors are with Faculty Informatics at TU Wien, Vienna, Austria.
firstname.lastname@tuwien.ac.at

(a) Initial position (b) During navigation with Nav2

Fig. 1: Stage-simulation of a 32-robot MRS.

A. Sequential Planner

The chosen planning algorithm can be described as a vari-
ant of the spatio-temporal A*-Algorithm introduced in [4]
operating on a graph-based abstraction of the environment.
This abstraction is able to emulate 4/8-connected grid maps,
as well as higher level concepts such as voronoi graphs
with multi-edges. The key difference to the well-known A*-
Algorithm is given by additional occupancy checks whenever
a graph vertex is explored and added to the frontier: should it
be occupied by another robot at the point in time in which the
planning robot expects to enter, time must be spent waiting
earlier along the currently considered route. If it is impossible
to insert this waiting time at some point along the path
without risking collisions, the proposed node is not marked
for further exploration. These iterative planning processes
result in a detailed record describing at which points in time
any particular graph vertex is expected to be occupied by a
robot if no unexpected delays occur.

B. Route Representation

After planning an ideal path for a robot in the system,
post-processing is done to create a route suited for execution
by a real MRS. Routes consist of a series of indexed route
segments, each describing a move from one vertex of the
graph to one of its neighbors. In addition to the timestamps
during which this move is expected to take place, a set of
preconditions for the segment is generated by considering all
other robots scheduled to pass the destination of the move
before it occurs. A precondition is considered to be satisfied
as soon as the robot it is referencing has completed the
noted segment of its own route (i.e. it has passed through
the vertex at which both routes cross). This creates clear
precedence relations, which serve to improve the systems
resilience towards neglected or unexpected delays during
navigation.
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IV. ROS2 INTEGRATION

The ROS2 integration of the implemented planner is
split between multiple communicating system components,
pictured in Fig. 2.

Fig. 2: Architecture of the ROS2 integration.

A. Route Distributor

The Route Distributor node acts as the central coordinator
of the MRS. It is responsible for initializing navigation
by generating each robots route using the implemented
prioritized planning algorithm and distributing them among
the MRS using ROS actions. During route execution, it
monitors the received feedback and aborts navigation should
unexpected issues arise.

B. Route Supervisor

The communication between robots and the Route Dis-
tributor is handled by an individual Route Supervisor node
for every robot. Each of these nodes also monitors the robots
progress along its own route and publishes this information
for consumption by all the Route Followers in the system.
This enables robots to wait on unsatisfied preconditions to
in order to avoid situations not considered during planning.

C. Route Follower

To enable the use of the wide variety of localization
strategies, local planners and other software components
available within Nav2, the system integrates with a Nav2-
planner-plugin known as the Route Follower.

V. EVALUATION

The implemented planning algorithm was tested on ran-
domly generated routing problems featuring 8-32 robots
concurrently attempting to find a route through a heavily
restricted warehouse-like environment. Through varying the
order in which routes are planned, a solution to each of
these routing problems was found. The systems capability

Fig. 3: Routing success in a highly constrained environment.

of executing these found routes was then evaluated by
simulating navigation using the Stage simulator.

Fig. 3 depicts the ratio of individual robots which were
able to reach their goals as well as the chance of any robot
failing to finish its route due to an emergency stop, a collision
or similar reasons. Both metrics behave in a roughly linear
fashion, resulting in sharply degrading reliability as more
concurrently navigating robots are added to the system.

Two central causes for these failures were identified:
1) Off-the-shelf Nav2 local planner solutions navigating

based on a generic path representation deviating from
the strictly defined pre-planned routes.

2) Endless waiting on an unsatisfied precondition refer-
ring to a stuck robot causing cascading failure in the
system.

VI. SUMMARY AND OUTLOOK
Collision-free routes for members of a multi-robot sys-

tems can be found by the implemented algorithm, but it
is evident that this does not guarantee that these routes
can be executed without issue in realistic conditions. While
routing preconditions were introduced to counteract timing-
related failures, they have proven insufficient to avoid them
entirely without addressing flaws in the systems architecture
and implementation. Introducing additional mechanisms to
increase robustness such as on-line re-planning in case of a
detected deadlock represents another avenue for future work.

VII. ACKNOWLEDGMENT
This research is supported by the Austrian Science Fund

(FWF) under project No. 923138, GreenFDT.

REFERENCES

[1] B. Binder, F. Beck, F. König, and M. Bader, “Multi Robot Route
Planning (MRRP):
Extended Spatial-Temporal Prioritized Planning,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Nov 2019, pp. 4133–4139.

[2] J. Heselden and G. Das, “Heuristics and rescheduling in prioritised
multi-robot path planning: A literature review,” Machines, vol. 11,
no. 11, p. 1033, 2023.

[3] G. Kyprianou, L. Doitsidis, and S. A. Chatzichristofis, “Towards the
achievement of path planning with multi-robot systems in dynamic
environments,” J. Intell. Robot. Syst., vol. 104, no. 1, 2022.

[4] W. Wang and W.-B. Goh, “Multi-robot path planning with the spatio-
temporal A* algorithm and its variants,” in Advanced Agent Technology.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 313–329.

Proceedings of the Austrian Robotics Workshop 2025

https://doi.org/10.34749/3061-0710.2025.19 116
Creative Commons Attribution
4.0 International License



D
ra

ft

ROS with LEGO Spike

Jakob Buchsteiner1, Daniel Marth2, Moritz Taferner1 and Markus Bader1

Abstract— Teaching mobile robotics algorithms through
hands-on hardware exercises can be both costly and resource-
intensive. This work addresses this challenge by introducing an
affordable differential drive vehicle constructed from LEGO
components. An onboard Raspberry Pi, equipped with a camera
and a Build HAT, provides standard ROS2 interfaces. An out-
standing feature of the design is the calculation of laser ranger
data from camera images, which enables the investigation of
sensor and motion models, as well as probabilistic approaches
for self-localization and mapping. The paper presents a proto-
type together with statistical results on the motion and sensor
models within the real and simulated environment.

Index Terms— ROS2, Mobile Robot, Self-Localization

I. INTRODUCTION

Robot Operating System (ROS) plays a major role in the
growing field of robotics, especially in education, such as
teaching mobile robotics. Integrating affordable hardware
with a software platform like ROS enables undergraduate
students to gain hands-on experience in robotics.

This paper explores the possibilities of integrating the
Lego Spike PRIME robotics kit into the latest version of
ROS2 [1], utilizing a Raspberry Pi 4 single-board computer.
For tight integration with the ROS2 ecosystem we employ
pre-existing components such as ros control [2], the default
ROS2 implementation of AMCL (Adaptive Monte Carlo
Localization) and the simulation tool Gazebo [3]. The ex-
perimental evaluation shows the viability of the presented
approach as a base platform for simple localization tasks.

Fig. 1: The assembled
robot used for the eval-
uations of this paper.

Fig. 2: Generating laser range
data for localization using low-
cost camera images.

II. RELATED WORK

Commercial platforms such as the Turtlebot [4], which
was specifically developed for ROS, are also frequently
used in education to practice hands-on mobile robotics.

*This work was not supported by any organization
1Jakob Buchsteiner, Moritz Taferner and Dr. techn. Markus Bader

(first.last@tuwien.ac.at) are with Faculty of Informatics,
Vienna University of Technology.

2Daniel Marth (daniel.marth@tum.de) is with the Department
of Computer Science, Technical University of Munich.

However, the acquisition costs play a very large role and
therefore make it a less accessible option for institutions with
limited resources. [5] also looks at using Lego Spike based
robots in combination with ROS2 and Gazebo, however
does not address localization. Our design fills this gap by
extracting laser ranger data from camera images, allowing
direct application of textbook algorithms like [6].

III. IMPLEMENTATION

To provide a base platform for teaching, we developed
three primary components: hardware support, localization
system using a camera and a simulation environment. The
components draw their information from a shared robot de-
scription in the Unified Robot Description Format (URDF).

A. Hardware Support
One challenge of hardware integration is retaining

reusability for different robot designs. Thus, we leverage
existing motion controllers of the ros2 control framework,
by providing the robot description and a plugin serving as
a hardware abstraction layer for the Lego hardware. This
layer controls the actuated wheels connected to the Raspberry
Pi Build HAT, communicating using the documented serial
protocol.

For evaluation, we use a differential drive platform with
two independently driven wheels on each side of the robot
and a caster wheel, allowing the robot to move in both
linear and angular directions (Fig. 1). The differential drive
controller included in ros2 control then translates motion
commands to wheel velocities and performs odometry with
the data from the wheel encoders.

B. Localization
Classic implementations of AMCL and SLAM (Simulta-

neous Localization and Mapping) operate on laser range data
[6], however such sensors are expensive. We solve this issue
by developing an intermediate layer, which extracts distance
measurements from camera images using line markings on
the floor.

Using the cameras intrinsic and extrinsic calibration pa-
rameters we construct a projective transform H ∈ R3×3,
mapping points on the ground plane to points on the camera
plane. We determine lines in the image corresponding to
radial lines around some ray center point on the ground
plane. Along each ray, we apply a simple edge detection
kernel, and estimate the width of the line using two pairs of
line entry and exit points. After checking against the width
threshold to isolate line markings from other line features,
entry points are reported as the distance measurement in the
respective direction (Fig. 2).
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C. Simulation

Since many educational robotic tasks can be prototyped
and evaluated in simulation, we set up a simulation environ-
ment to support development and preliminary testing. The
same robot description used for hardware support is enriched
by physics parameters specific to the simulator Gazebo. Most
noteworthy are mass, rotational inertia and friction. We ap-
proximated inertia by dividing the robot into subcomponents,
each of which were approximated as cuboids and cylinders
with evenly distributed mass. The inertia calculation is then
automatically performed by Gazebo. Friction parameters
were manually tuned to prevent the robot from slipping in
the simulation (µ1 = µ2 = 1.0).

IV. RESULTS

We evaluated and compared the vehicle’s pose estimation
using only the implemented motion model (odometry) and
using AMCL with our emulated laser ranger data. Ground
truth data was acquired from an OptiTrack motion tracking
system.

A. Experimental Setup

The map used for evaluation is roughly a square with
a side length of one meter and black, 5 cm thick tape
markings used for localization. The robot is instructed to
follow a figure-eight trajectory using open-loop control, and
the trajectories estimated using odometry and AMCL are
then compared against ground truth. Performance is analyzed
in both simulation and real world environments according to
[7].

B. Analysis

For a qualitative analysis of self-localization accuracy,
we plot the trajectories for both simulation and real-world
environments (Fig. 3). The convergence of the estimated
AMCL trajectory towards the ground truth can be observed in
Figs. 3a, 3b and 3d. We can also observe reasonably accurate
odometry in Fig. 3c.

In simulation and without an offset in the initial pose
estimate, the estimation using AMCL shows an absolute tra-
jectory error of 9.6 mm, while the accuracy of the odometry
trajectory has absolute trajectory errors above 50 mm.

Since [7] disregard offsets in the trajectory’s starting
pose, the numeric evaluation suggests that the estimated
AMCL trajectories in the real world are worse than the
raw odometry. However, Fig. 3d shows the improvement the
localization system achieves: While the odometry can never
match the ground truth trajectory, the AMCL particle filter
relatively quickly converges to the correct position.

V. CONCLUSION

The robot’s performance under real-world conditions
demonstrated its potential as a suitable platform for teach-
ing fundamental robotics concepts, such as navigation and
localization. Robot control was proved to be precise in
both simulation and real-world environments. Although self-
localization solely derived from the wheel encoders deterio-
rates over time due to drifting, the AMCL particle filter did
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Fig. 3: Ground truth trajectories vs. the trajectories estimated
by odometry and AMCL in simulation and real world envi-
ronments. The right column shows that AMCL with emulated
LIDAR data is able to recover from an initially incorrect pose
estimate (∆x =−100 mm, ∆y =−100 mm, ∆θ = 0.3).

not only achieve smaller pose errors but could also recover
from incorrect initial pose estimates.
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Elastic Structure Preserving Control for a Structurally Elastic Robot

Alexander Kitzinger1, Hubert Gattringer1 and Andreas Müller1

Abstract— Elastic lightweight manipulators offer multiple
benefits but come at the cost of increased structural flexibility,
making the system more susceptible to vibrations. These
circumstances require control concepts with a special focus
on vibration suppression. Based on an lumped element
model formulation, a control method called elastic structure
preserving control is used for additional damping injection,
while using standard motor PD control, to ensure low tracking
error of the flexible link robot’s end effector. As a first proof of
concept for the used structural elastic robot the method is only
applied for the first degree of freedom. The results obtained
are further compared to a flatness-based control approach
utilizing exact feed forward linearization and full state
feedback control. Both methods are tested using cost-effective
IMU measurements for feedback control, in addition to the
motor measurements. The outcome demonstrates that, based
on the evaluated angular accelerations, both methods achieve
comparatively effective vibration damping relative to standard
motor PD control.

Keywords: elastic structure preserving control, flatness-
based control, elastic robot, lumped element model

I. INTRODUCTION

Elastic lightweight robots, such as the one shown in Fig. 1,
are characterized by an improved payload-to-manipulator
weight ratio, resulting in advantages like lower manufactur-
ing costs, reduced energy consumption, and space-efficient
usability. Additionally, their advantageous dynamic proper-
ties enable high speed manipulations, which are crucial for
industrial applications. Nevertheless, high jerk inputs and
external disturbances lead to non-desirable TCP oscillations,
resulting in intolerable position errors and settling times. To
tackle this challenges [1] presents a flatness-based trajectory
control method, emphasizing the use of IMU sensors for
vibration suppression. The aim of this work is to evaluate
the feasibility and performance of elastic structure preserving
(ESP) control introduced in [2] and benefit from its advan-
tages, potentially also for structurally elastic robots. In doing
so, an easily comprehensible controller parameterization is
expected to enhance the damping characteristics of the
considered flexible link manipulator. However, due to the
limiting factors of the robot setup, a positive result is not
guaranteed. Crucial aspects include the distinctive multiple
oscillatory modes of the flexible links, bus delay times
caused by the centralized ESP control scheme and noise and
uncertainties introduced by the low-cost accelerometer and
gyroscope measurements.

1 Alexander Kitzinger, Hubert Gattringer, Andreas Müller are with
Institute of Robotics, Johannes Kepler University Linz, 4040 Linz,
Austria {alexander.kitzinger, hubert.gattringer,
a.mueller} @jku.at
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Fig. 1: Sketch and photo of considered elastic robot

II. MODELING

The foundation of the model-based control builds a
lumped element model using virtual springs to represent the
three elastic harmonic drive gears and two flexible beams.
The formulation of the equations of motion (EoM) for the
underactuated mechanical system is based on [3] and given
by

MMq̈M +QR(q̇M) +K(qM − qA) = QM (1)
MA(qA)q̈A + gA(qA, q̇A) +K(qA − qM) = 0 (2)

using the minimal coordinates of the three motor qM and
their corresponding arm angles qA. The positive definite,
symmetric mass matrices MM and MA include the motor
and arm inertia, whereas vector gA describes the nonlinear
gravitational, Coriolis and centrifugal forces of the links.
Coupling between the actuated motor and under-actuated arm
equation is represented by the diagonal and positive definite
linear stiffness matrix K. The vector QR contains considered
viscous and Coulomb friction forces, while QM is the vector
of the generalized motor driving torques.

III. CONTROL

According to [2] the control goal for the elastic robot
is to derive a structure preserving state transformation that
transforms the under-actuated system (1)–(2) into the quasi-
full actuated closed loop form

MM
¨̃qM +K(q̃M − q̃A) = Q̃M (3)

MA(q̃A)¨̃qA + g̃A(q̃A, ˙̃qA) +K(q̃A − q̃M) = −Dq̃A (4)

where the adjustable positive definite diagonal-matrix D
injects damping according to the new coordinates q̃T =
(q̃T

M, q̃T
A) and input Q̃M. The new arm coordinates corre-

spond to the motion error of the arm angles q̃T
A = qA −

qA,d and the new motor coordinates q̃T
M reflect the desired

damping and tracking behavior. The transformation to the
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closed loop form (3)–(4) does not cause dynamical shaping
of the inertial properties and is preserving the initial stiffness
K of the links. The gravitational and friction terms are
compensated, while the Coriolis terms remain.

For a proof of concept, only the first degree of freedom
qA = qA,1 will be considered, using stationary angles of
qA,2 = qA,3 = 0 for the remaining arm and corresponding
motor coordinates. Therefore, the control law simplifies
drastically as the gravitation, centrifugal and Coriolis terms
vanish. Equating (2) and (4) yields the state transformation
for the motor coordinate

q̃M = qM −
(
qA,d −K−1D ˙̃qA +K−1MAq̈A,d

)
︸ ︷︷ ︸

qM,d

. (5)

The corresponding input transformation, obtained by equat-
ing (1) and (3), characterizes the control law without friction
compensation for the applied motor torque

QM = Q̃M−D ˙̃qA −MMK−1Dq̃
(3)
A︸ ︷︷ ︸

Qda

+ (6)

(MM +MA)q̈A,d +MMK−1MAq
(4)
A,d︸ ︷︷ ︸

Qff

and using cascaded motor PD control (servo drive) in the
new coordinates

Q̃M = −KD(KPq̃M + ˙̃qM) (7)

The i-th time derivative is denoted by q̃
(i)
A . The adjustable

control parameters are KP, KD and the link-side damping
factor D. Based on the desired motor position qM,d, the
feed forward Qff and damping torque Qda the control law
is implemented on the elastic robot using a cycle time of
400µs and the setup shown in Fig. 2.
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Fig. 2: Control Scheme

IV. RESULTS

The control method is tested using a required fourfold con-
tinuously differentiable sin2 trajectory with angular motion
from −45 deg to 45 deg. The joint limitations are: maximum
velocity 1.25 rad/s, maximum acceleration 15.6 rad/s2 and
maximum jerk 195.3 rad/s3.

The result in Fig. 3 shows that ESP control achieves
significantly better tracking performance than simple PD
motor joint control (same servo drive parameters), preventing
the robot arm from overshooting oscillations as indicated by
the angular accelerations q̈A. After the trajectory, residual
vibrations remain which result from model uncertainties,
static friction and coupled in vibrations in other directions
of motion that are not actively controlled. The vibration
suppression and motor torque QM is comparable to the
results obtained using the flatness-based approach from [1].
However, ESP control has the advantage that TCP damping
can be easily varied and adjusted intuitively, making it
particularly interesting for further investigations.

Fig. 3: Comparison of the tested control methods

V. CONCLUSION

This initial test demonstrates that elastic structure-
preserving control can also be beneficial for structural elastic
robots using IMU measurements. Nevertheless, the next step
should involve extended research implementing the control
method in combination with a suitable real-time observer
including all three DOF of the elastic robot. Furthermore, a
time-optimal application as outlined in [4] is desirable.
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A Modular and Configurable Architecture for ROS 2 Hardware
Integration with micro-ROS

Jakob Friedl1 and Markus Bader1

Abstract— In general, a vehicle cannot follow a given tra-
jectory if the control commands for the motor controllers are
not delivered to the hardware in time. This issue arises when a
standard computer running ROS 2 is used for control without
a real-time extension. This paper presents an architecture that
leverages micro-ROS on an ESP32-C6 with a RISC-V CPU
running a Real-Time Operating System (RTOS). The goal is
to demonstrate that drift compensation, based on odometry
and IMU data, can be performed in real-time directly on
the microcontroller. As a first step, we show how micro-
ROS handles robot kinematics (Ackermann steering) within
the firmware, configured via a persistent parameter server. We
demonstrate that this design improves integration simplicity,
adaptability, separation of concerns and evaluate real-time
compliance.

Index Terms— micro-ROS, mobile robotics, embedded sys-
tems, ROS 2

I. INTRODUCTION

This paper proposes a microcontroller-based ROS 2 inte-
gration architecture aimed specifically at modular, config-
urable robotics hardware. Leveraging the micro-ROS frame-
work, it provides a plug-and-play solution that simplifies
interfacing embedded hardware with higher-level ROS 2
ecosystems shown in Figure 1. Traditional designs often
use onboard computers that interact directly with hardware
components (as can be seen in [7]), a strategy that can lead
to redundant software development, a mixing of low-level
hardware interactions with higher-level control concerns, and
challenges in ensuring real-time performance. Micro-ROS
addresses these limitations by extending ROS 2 functionali-
ties directly to resource-constrained microcontrollers.

In this approach, the micro-ROS agent on the ROS 2 host
translates the lightweight eXtremely Resource-Constrained
Environments-Data Distribution Service (XRCE-DDS) mid-
dleware used by micro-ROS into standard DDS messages
[1], [2]. It supports transports such as UDP and USART
by default, and can be extended with custom implemen-
tations. However, hardware variations often force firmware
rebuilds or manual tweaks; our design instead embeds an
NVS-backed parameter server, allowing kinematic and hard-
ware settings to be adjusted live via ROS 2 parameters.

Incorporating an RTOS into the firmware permits local
prioritization of time-critical tasks, ensuring reliable op-
eration under strict deadlines. Prior work in underwater
vehicles demonstrates a micro-ROS RTOS setup [6], but
offers no built-in mechanism for runtime customization or
a clear task breakdown. In contrast, we leverage advanced

1The authors are with Faculty Informatics at TU Wien, Vienna, Austria.
firstname.lastname@tuwien.ac.at

Fig. 1. System overview and test platform on the right

RTOS features alongside our persistent parameter server
and detail a modular FreeRTOS task architecture (see II-
B). While demonstrated on an Ackermann-steering robot,
our modular FreeRTOS task breakdown and NVS parameter
server generalize directly to other ROS 2–integrated hardware
and form the basis for more advanced microcontroller-based
trajectory following.

II. PROPOSED ARCHITECTURE

A. Hardware Components and System Overview

The initial question was how best to structure motor
control for an Ackermann robot integrated with ROS 2.
As highlighted in the introduction, conventional approaches
often conflate low-level hardware interfacing with high-level
control, impede real-time performance, and lack a common
framework for comparing firmware designs. The goal of the
specific design in this paper is to accept twist commands
via the /cmd vel topic, compute the necessary kinematics
for motor speeds and steering in the firmware, while pub-
lishing the resulting odometry, thus simplifying the interface
between ROS 2 system and hardware. Kinematic and control
variables are live-adjustable through the parameter server.
This approach is demonstrated on the MX-Car [4], a mobile
robot developed at TU Vienna with an Ackermann drivetrain
featuring two non-steering rear wheels (driven by BLDC hub
motors) and a front steering servo.

Figure 1 shows the overall system with the hardware
platform at the right. The top segment depicts the onboard or
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Fig. 2. Firmware application architecture overview

network-connected computer running ROS 2 (with a Docker-
ized micro-ROS agent), the middle segment shows the ESP32
running FreeRTOS with a dedicated micro-ROS node using
Non-Volatile Storage (NVS) for persistent configuration and
the respective interaction with the sensors and actuators. A
more detailed look at the firmware is provided in the next
section.

The single-core ESP32-C6-DevKitM-1 is used as primary
controller due to its processing capabilities, peripherals and
open RISC-V architecture. Micro-ROS integrates into its
build system via an ESP-IDF component [3]. Motor control
is provided by two daisy-chained ODrive-Micro controllers,
with a Control Area Network (CAN) transceiver interfacing
the microcontroller to exchange commands (e.g., position,
speed, effort) and feedback (e.g., velocity, current) [5].

B. Firmware and Communication

Figure 2 shows a simplified view of the firmware architec-
ture. We enforce strict timing by splitting work across four
FreeRTOS tasks with distinct priorities. The can dispatcher
and mros executor tasks run at highest priority, ensuring
no inbound messages are lost. The odometry task runs at
medium priority, and the low-priority time sync task handles
agent clock alignment via micro-ROS mechanisms (obtain-
ing the host timestamp) without interfering with real-time
deadlines.

The can dispatcher manages all CAN traffic to and
from the motor drivers, and the mros executor drives the
micro-ROS executor, handling subscribers, timers, and an
NVS-backed parameter server. Configuration parameters and
kinematic properties (e.g., wheel base, track width) are stored
persistently in non-volatile storage and can be updated via
standard ROS 2 param calls.

Incoming twist messages on /cmd vel are processed in
the mros executor: the callback computes motor and steering
setpoints using the Ackermann kinematic model as described
by [8] and forwards them to the drives, so no command
queuing is needed. In the odometry task, execution blocks
until fresh encoder estimates arrive from both drives; it then
performs forward kinematics to update an internal pose. A
timer-driven publisher retrieves this pose through a single-

element FreeRTOS queue (buffering only the latest state)
and publishes on /odom, timestamping the message with
the arrival time of the latest encoder sample. An onboard
or remote ROS 2 computer (depending on the transport) can
then integrate higher-level features such as path planning or
trajectory control.

III. EVALUATION
To assess the real-time performance of the integration

of this architecture, we measured timing at 10Hz over the
115200 baud serial transport during full system operation.
For odometry, 1200 messages were received by the host. The
reception intervals exhibited a mean of 99.998ms, a standard
deviation of 5.63ms, and a peak-to-peak jitter of 52.0ms.
We then measured the round-trip delay from publishing a
stamped twist command message on the host to applying
motor setpoints on the microcontroller by again logging 1200
messages. This delay averaged 28.684ms, with a standard
deviation of 4.73ms, and spanned 27.82ms peak-to-peak. In
both cases, no messages were lost.

Compiled with space optimization, the complete firmware
occupies 342.9kB of flash (4.09%) and 118.2kB DIRAM
(26.15%), confirming a compact footprint.

IV. SUMMARY AND OUTLOOK
This paper presents an architecture that integrates

resource-constrained microcontrollers with ROS 2 using
micro-ROS on an RTOS. It exposes hardware interfaces
as standard topics and services and simplifies configuration
via a persistent parameter server. We evaluated its real-time
performance at 10Hz over serial transport, observing latency
and jitter levels acceptable for typical mobile robotics appli-
cations, while still leaving room for optimization.

Future work will build on this architecture to realize
complex trajectory control on the microcontroller. The aim
is to calculate collision-free trajectories in the ROS 2 frame-
work on the host and then pass them on to the micro-ROS
controller for execution.
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Automating 3D printing for mass production

(b) Felix Daunert1, Prof. Dr. Tobias Weiser2, Prof. Dr. Dirk Jacob, Maximilian Besler, Florian Schmolke*

Abstract— This paper presents the development and eval-
uation of an automation concept for high-performance 3D
printers in an industrial environment. The paper’s special
characteristic is the multi-domain approach, which combines
design and development of the cell with parallel simulation
studies. The 3D printing robot cell was complimented with
an individual gripping system and a magazine for printing
plates. The final production performance of the concept was
evaluated with simulation studies of the robot cycle time and
overall performance.

Index Terms— Automation, 3D printing, Simulation

I. INTRODUCTION

This paper presents the development of an integrated
automation concept for an industrial 3D printing farm with a
production capacity in excess of one million parts per annum.
The focus was on the integration of automated loading and
unloading of a Masked Stereolithography (MSLA) high-
speed 3D printer (Solidator 8K [6]) by a 6-axis robot (KUKA
KR10 R1100). This project integrated offline simulations
and time-valued Petri nets in the design of the automation
concept to enhance the overall performance of the concept.
The analysis is conducted using KUKA.Sim and Siemens
Plant Simulation, where cycle times, material flows and path
planing is layed out and optimised. The final concept demon-
strates high production capacity and scalability, making it a
promising alternative to existing industrial solutions.

II. STATE OF THE ART

Additive manufacturing (AM) is currently experiencing
an increased integration of automated processes with the
objective of enhancing production efficiency and improving
profitability like the Figure 4 Production by 3D Systems [3].
This system provides a comprehensive solution that inte-
grates printing, cleaning and UV curing in a single mod-
ule. However, this solution is costly and exhibits limited
flexibility with regard to scalability. Other manufacturers
offer retrofit options that allow partial automation, such
as part removal (see Form Auto, Formlabs [4]). However,
AM technology requires good automation and scalability for
series production [1]. Modular automation concepts, in con-
trast, are distinguished by a deliberate selection of printing
technologies, optimised cell layouts and process optimisation
based on simulation. To ensure increased automation and

*This work was not supported by any organization
1 Felix Daunert, Student of Automation and Robotics, Faculty Electrical

Engineering, University of applied science Kempten, 87435 Kempten,
Germany felix.daunert@stud.hs-kempten.de

2Prof. Dr. Tobias Weiser is with Institute for Applied AI and
Robotics, University of applied science Kempten, 87435 Kempten, Germany
tobias.weiser@hs-kempten.de

scalability, it is necessary to employ simulation software
such as KUKA.Sim and Plant Simulation. This approach
facilitates the determination of realistic operating parameters
and consequently enables the evaluation of the developed
concept against the requirements.

III. REQUIREMENTS ANALYSIS

In order to achieve an annual production of
at least one million parts with dimensions of
50 mm x 30 mm x 20 mm (W x D x H), a calculation of the
required number of printers and print cycles is necessary. In
this context, the Solidator 8K was identified as a suitable
solution, given that its printing time is solely dependent on
the part height and it possesses a substantial build plate with
dimensions of 330 mm x 185 mm. For automation purposes,
an actuator is requisite. This actuator must meet certain
requirements, namely the capacity to securely grip the
printing plates, a minimum load capacity of 2.5 kg, and six
degrees of freedom to facilitate the dexterous manipulation
of the printing plates. Furthermore the workspace must
accommodate six printers.

IV. GRIPPER AND MAGAZINE DESIGN

In the course of the conception a two-finger gripper was
developed for the handling of the printing plates by the
robot. Its an asymmetrical construction with the objective
of avoiding collisions with the printing bed. The gripper
construction, see Fig. 1, was designed with consideration for
mechanical and dynamic aspects in order to ensure the secure
grasping of the printing plates.

Fig. 1. gripper (with print bed on the left)

A modular magazine functions as a print plate buffer
between the outsourced reprocessing and the loading of the
print plates. The magazine and the gripper are both crucial
for a comprehensive simulation of the system’s processing
time and, by extension, its productivity. The magazine is
employed as a station for the taking of new plates, while the
gripper enshures the precise path planing during grasping
and handling of these plates.

V. ROBOT SELECTION

A 6-axis kinematic system is evidently the optimal solu-
tion, as the requirements clearly indicate. The 6 Solidators
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are arranged in a U-shape around the kinematics. A reach
analysis in KUKA.Sim revealed that the KUKA KR10
R1100 meets all requirements with a reach of 1100 mm, a
payload capacity of 10 kg and a repeatability of ±0.02 mm.
These parameters ensure that the printers can be processed
with the requisite precision and without collisions in a
centrally arranged cell.

VI. ROBOT SIMULATION

The movement patterns of the integrated robot system
were modelled and simulated in KUKA.Sim, with CAD
models of the U-arrangement of the Solidators around the
kinematics, the print plate magazine and the gripper being
imported (see Fig. 2). These must be integrated into the
simulation to ensure precise programming of collision free
movement patterns of the kinematics. A black box is utilised
as a depository for the printed plates, since there was no
interface to subsequent stations defined.

Fig. 2. KUKA.Sim Layout with black box and magazine on the left

The outcomes of the simulations demonstrate that the
KR10 R1100 is capable of achieving an average cycle
time of 15.5 seconds per printer. These results take into
account critical movement segments, such as the reduction in
acceleration during the transportation of printed plates. The
reorientation required for each printer has small effect as the
maximum deviation of the mean is 1 second. This is due to
the tool center point (TCP) speed of 2 m

s while reorienting.
The majority of the mean cycle time is spent picking up and
setting down the printing plates at a reduced TCP speed of
0.1 m

s . Utalizing these simulations enabled the programming
of collision-free motion sequences and the determination of
real cycle times for the robot. This data is imperative for
simulating the overall task.

VII. TOTAL CYCLE SIMULATION

The basis for the overall process simulation in Plant
Simulation is a time-evaluated Petrinetwork, in which a shift
calendar has been introduced for the simulation of a calendar
year. This is due to the fact that maintenance, potential
repairs and the replacement of the resin reservoirs are manual
tasks. The calendar is modeled on a working week from
Monday to Friday 8 hours daily, and takes into account
conditions such as availability. The educated guess is made

that the printers are available at 95% of the time and the
kinematics at 100%, which is regarded as ideal. The duration
of the printing process is either 20 minutes for 80 standing
parts or 6 minutes for 24 lying parts with a constant setup
time of 2 minutes and a processing time of 15.5 seconds by
the kinematics. The simulation examined the standing and
lying arrangements of parts on the plates, with the upright
configuration resulting in a higher part production due to
a reduced proportion of setup time in the total operating
hours. For the calendar year, a standing arrangement of
parts on the plate yielded a theoretical annual output of 2.3
million parts. This calculation is based on the utilisation
of 6 Solidator 8Ks and a KUKA KR10 R1100 kinematic
system. The scalability of the system is evident in its ability
to accommodate the placement of the kinematic structure
on a 300 mm-high platform, enabling the construction and
processing of an additional second storey comprising 6
solidators. Furthermore, the robot demonstrates the capacity
to efficiently handle twelve solidators, resulting in an average
cycle time of 16.5 seconds.

VIII. CONCLUSION

In this project, an automation concept was developed that
uses 6 Solidator 8K printer in combination with a precisely
matched 6-axis robot (KUKA KR10 R1100) to realise an
efficient and scalable 3D printing farm. The optimisation
of production was achieved through the targeted use of
offline simulation and time-weighted petri nets, resulting in
an average kinematic processing time of 15.5 seconds per
printer. The developed solution has been shown to exceed
the production target by a factor of 2.3, thus representing
a commercially viable alternative to existing industrial sys-
tems. The scientific significance is high for the robot cycle
time but reduced by the educated guesses concerning the
availability and setup time of the printers.
Future research should focus on implementing real printer
characteristics for further optimizing. There is the potential
trough artificial intelligence in the domain of path plan-
ning [5] or in Petrinetworks [2] to enhance flexibility and
efficiency of the cell.
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A Cost-Effective Testbed for Measuring
the Performance of Reference Switches*

Tobias Hofer1, Thomas Schmid1, and Olaf Saßnick2

Abstract— Reference switches are widely used in automation
and robotics for positioning tasks. However, typically data
sheets do not provide specifications regarding their repeatability
performance. This work presents a cost-effective testbed to
measure the repeatability of different switch types. It uses a
high-resolution linear scale and an ATmega microcontroller to
detect small deviations in switch trigger points. The firmware
is optimized for low latency and openly available. Finally, the
proposed testbed is used to assess the performance of different
reference switch types.

Index Terms— Repeatability, Reference Switches, Automa-
tion

I. INTRODUCTION

In robotics and automation, accurate positioning is re-
quired to ensure results being consistent and of high-quality.
This is typically achieved using integrated measurement sys-
tems. Measurement systems based on incremental encoders
are widely used due to their cost-effectiveness, however they
require switches for homing the system to a known reference
position. While accurate detection of the reference position
is critical for overall repeatability, data sheets for switches
typically do not specify their repeatability performance.
This work therefore proposes a testbed for evaluating the
repeatability of various reference switches experimentally,
addressing two research questions: How can a cost-effective
testbed be designed to evaluate the repeatability performance
of reference switches? How repeatable is the performance of
commonly used reference switches? While this topic cer-
tainly is studied for commercial applications, to the authors’
knowledge, no publication on this topic exists so far.

The further content is structured as follows: Section II
introduces the terms accuracy and repeatability, along with
different types of reference switches. Section III then de-
scribes the testbed design, covering the mechanical and
electrical setup as well as the firmware implementation.
Next, Section IV presents selected results. Finally, Section V
summarizes the work and outlines future tasks.

II. BACKGROUND

Accuracy describes how closely a target position can
be reached. Any deviation from the target position can be
considered an accuracy error [1].
Repeatability refers to how closely the same position can

*This work received no organizational support, authors contributed equally.
1Tobias Hofer and Thomas Schmid are bachelor students in Infor-

mation Technologies at the Salzburg University of Applied Sciences,
{thofer,tschmid}.itsb-b2022@fh-salzburg.ac.at

2Olaf Saßnick is with Salzburg University of Applied Sciences,
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Fig. 1. Top view of the assembled testbed, with 1© indicating the reference
switch under test, 2© the linear slide, 3© the belt drive, 4© the linear scale,
5© the stepper motor, and 6© the user interface, consisting of a display and

input encoder knob.
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Fig. 2. The electrical communication diagram of the proposed testbed.

be reached again under identical conditions [1]. A high
repeatability is possible even with low accuracy, as long as
consistently the same accuracy error occurs.
Different types of reference switches are used in automa-
tion and robotics. They can be categorized as mechanical or
electrical, and as contact or contactless. The most common
types are capacitive, inductive, photoelectric, and mechanical
switches.

III. EXPERIMENT SETUP

The hardware is selected with cost-effectiveness in mind.
Fig. 1 shows the assembled testbed. A pneumatic slide
(SMC EMXS20-125) is used as a linear axis, with its
cross-roller bearings providing low friction and adjustable
mechanical play. Its pneumatic cylinders are decoupled from
the motion axis and instead actuated by a NEMA17-sized
MDrive stepper motor via an MXL belt. The slide’s mass
helps dampen stepper motor pulses, while the movement
is measured using an incremental Aikron MDI series linear
scale (1 µm resolution with quadrature encoding). The system
is controlled by an ATmega328PB evaluation board. To
allow for different sensors with varying physical dimensions
and mounting options, the sensor is attached to the testbed
via a swappable adapter plate. The total hardware cost is
approximately 400 C, with the linear scale being the most
expensive component at around 200 C.
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Fig. 3. The experiment flow implemented in the firmware.

A. Electrical Setup

Fig. 2 gives an overview of the testbed’s electrical commu-
nication setup. The central control unit is an ATmega328PB
microcontroller and all signals, inputs or outputs, are pro-
cessed or generated by it. The output signals for the stepper
motor and input signal of the reference switch are directly
interfaced to the microcontroller. The scale provides three
separate signals – A, B, and Z – as differential RS-422 sig-
nals to increase noise immunity. A separate RS-422 receiver
is used to read the differential signals. The Z-signal is the
reference signal of the scale and occurs every 50 mm. The
A/B signals indicate the incremental position change of the
scale. They are 90° phase-shifted relative to each other, and
allow to determine the direction of movement. In this setup,
the A/B signals are combined using an XOR logic gate to
increase the effective resolution by counting every edge on
both signals.

B. Firmware Implementation

Fig. 3 shows the implementation for a test cycle in the
firmware1. First the slide is reversed until a reference mark
(Z-signal) on the linear scale is passed. Next the slide
is moved forward until the reference switch under test is
triggered and the position of the linear scale is saved. The
linear scale position is tracked using XOR-ed A/B signals
as a clock source for two 16-bit hardware timers. As the
ATmega328PB supports only one clock edge per timer, two
timers are used to count on both edges. An overflow counter
is added for both timers to track distances beyond the 16-
Bit counting range. The resulting distance is calculated by
combining both timer values and the overflow counter.

The Z-signal is handled as an external interrupt, resetting
both timer values and the overflow counter on each reference
mark. This way, after reversing until the reference mark and
moving towards the switch again, a second reset occurs,
removing the need to account for mechanical belt drive
backlash. To ensure that the testbed firmware has a minimal
reaction time, the main loop only needs to check the switch
output signal while taking a measurement. The resulting
measurement values with 1 µm resolution can be retrieved
using the UART interface of the microcontroller.

1The source code is openly available under: https://github.com/
sas-o/2025-arw-refswitch-tester
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Fig. 5. Deviation of the sensor trigger points per experiment run.

IV. RESULTS

The results for different types of end switches are briefly
presented in Fig. 4 and Fig. 5. For each sensor, the ex-
periment was repeated n = 200 times. Based on the tested
sensors and results, both the selected optical light barrier
and the inductive sensor perform better than the provided
measurement accuracy of 1 µm. Therefore, we conclude
that their repeatability is smaller than 1 µm, exceeding the
testbed’s measurement resolution. At the same time, it also
demonstrates the repeatability provided by the testbed itself.
For mechanical switches, a larger deviation is expected, as
they require physical contact. Two different models were
tested, with model 1 clearly outperforming model 2. In
Fig. 5, the deviation of the sensor trigger point is shown per
run. No linear error is visible, which could have indicated
an issue with the testbed itself.

V. CONCLUSION

In robotics and automation, switches are widely used for
reference positioning. However, most data sheets for switches
do not specify a repeatability performance for such a task.
This work presents a cost-effective testbed for measuring
the repeatability of different types of reference switches.
Measurement results with a repeatability of 1 µm are achiev-
able. Next, the testbed will be used to evaluate a broader
range of reference switches under varying conditions, such
as different movement speeds and trigger directions. Further
improvements to the testbed could include replacing the
stepper motor with a hollow cup DC motor to reduce induced
vibrations, installing limit switches for improved safety, and
adding temperature and humidity logging to monitor the test
environment.
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A Trajectory Consistency Metric for GNSS Anomaly Detection with
LiDAR Odometry

Hans-Peter Wipfler1 and Gerald Steinbauer-Wagner1

Abstract— While Global Navigation Satellite System (GNSS)-
based robot localization is successful in open scenarios, it
quickly becomes unreliable in GNSS-degraded environments
such as forests. With the increasing interest in using au-
tonomous robots in forestry, it becomes more important to
have reliable localization in forest environments, which are
among the most challenging areas for GNSS-based localization.
Having an estimate for the quality of the localization can
help achieve this. While GNSS receivers provide uncertainty
estimates based on signal characteristics and the satellites’
constellation, practical experience shows that these values are
less meaningful in forests. This paper presents an error metric
that exploits the properties of commonly used robot localization
setups to assess the quality of the localization. This assessment
is based on a comparison between a LiDAR odometry-based
local trajectory estimate and a GNSS-based global trajectory
estimate in their respective coordinate systems. A qualitative
analysis shows that the metric enables meaningful statements
about the quality of position estimates derived from GNSS
measurements in the global coordinate system.

Index Terms— anomaly detection, GNSS, LiDAR odometry

I. INTRODUCTION
State estimation architectures of mobile robots often sepa-

rate global and local state estimation for localization [6],[3].
This is done by using two world-fixed coordinate systems, a
local coordinate frame that is locally consistent but suffers
from long-term drift, and a global coordinate frame that is
globally consistent but suffers from transient errors in GNSS-
based position information. In forest environments, GNSS-
based position estimation is heavily influenced by the sur-
rounding environment due to signal shading and reflections
caused by objects like trees or rock walls [2]. Even when the
GNSS data is fused with IMU (Inertial Measurement Unit)
data, practical experience has shown that these phenomena
still have a large impact on the global position estimate [6].
However, many robots today are equipped with a LiDAR
sensor, which can be used for local motion estimation
and provides low-drift, locally consistent position estimates
[5]. This work exploits the properties of local and global
trajectories to detect patterns in the global trajectory that
are not backed by the local trajectory. Based on this we
developed a metric for assessing global localization quality,
which allows monitoring of localization quality in real-time,
making it usable for anomaly detection, adaptive sensor
fusion, or GNSS rejection strategies.

*This work was funded by the Federal Ministry for Climate Action,
Environment, Energy, Mobility, Innovation and Technology of Austria and
the Austrian Research Promotion Agency (FFG) with the project RoboAlm.

1Hans-Peter Wipfler and Gerald Steinbauer-Wagner are with
the Institute of Software Engineering and Artificial Intelligence,
Technical University of Graz, Austria {hans-peter.wipfler,
gerald.steinbauer-wagner}@tugraz.at

II. RELATED WORK
LiDAR-based odometry estimates the motion of a robot

by aligning successive point clouds. Direct LiDAR Odom-
etry (DLO) [1] is a computationally efficient approach that
enables real-time LiDAR odometry on resource-constrained
robotic platforms. One of the key features of the method is a
submapping strategy that aims to keep the position estimate
locally consistent. This makes it a reasonable choice for the
use in local state estimation in forests.

In [7], the authors propose the use of trajectory similarity
metrics for comparing a reliable short-term trajectory from
motion estimation with an IMU with a trajectory obtained
from GNSS measurements. These metrics compare only the
similarity of the point sets. In contrast, the proposed ap-
proach computes its error value based on full transformations
∈ SE(3). This allows the application of orientation- and
translation-based error metrics.

III. METHODOLOGY

A. Localization Consistency Evaluation

To assess the reliability of GNSS-based localization in
forest environments, we introduce a trajectory error metric
that evaluates the consistency between local trajectories and
global trajectories. Since the LiDAR odometry trajectory is
locally consistent, it serves as a short-range reference. To
achieve this, a relative pose error estimate between pose pairs
from the global and local trajectories is used. To fully exploit
the information contained in poses in SE(3), an alignment
of the trajectories is necessary to ensure that both position
and orientation are compared meaningfully. In addition, the
resulting error estimate should show a high sensitivity to
the consistency of the most recent pose. In order to achieve
this objective, each transformation used is related to this
pose which is illustrated in Figure 1. For each evaluated
pose, a subtrajectory is selected using a fixed spatial window
defined by the parameters ∆sa and ∆sb where ∆sa defines the
minimum look-back distance, ensuring that only sufficiently
separated past poses are included, and ∆sb defines the maxi-
mum look-back distance, limiting the subtrajectory length to
prevent excessive drift influence. Given a trajectory parame-
terized by the cumulative distance traveled s from the LiDAR
odometry, the sub-trajectory consists of poses selected within
the interval [s−∆sb,s−∆sa]. By choosing poses within this
range, we ensure that the sub-trajectory captures the recent
motion history while maintaining a stable reference for error
computation. This results in three necessary steps that must
be performed for each pose of interest: 1) subtrajectory
selection: collect past poses within the interval [s−∆sb,s−
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∆sa], 2) alignment: align local and global subtrajectories to
ensure a meaningful comparison of transformations, 3) error
computation: compute the consistency error between both
subtrajectories as defined below.

correspondences
determined from

timestamps

Global Trajectory

Local Trajectory

Fig. 1. Illustration of the trajectories used to compute the consistency error.
The green poses are the poses of the trajectory of the robot in the global
coordinate system. The orange poses are the poses of the robot in the local
coordinate system. The global poses are related to the local ones based on
time, meaning every PL

k maps to a PG
k .

B. Error Metric Formulation

The transformation from the current pose to the pose at
s−∆s in the aligned local trajectory is given by:

T L∗
s−∆s,s =

(
T L

align ·PL
s−∆s

)−1 ·
(
T L

align ·PL
s
)
, (1)

where T L
align is the transformation obtained in the alignment

step, and PL
s is the pose of the local trajectory at traveled

distance s. The global trajectory is related to the local
trajectory by the time t(s), with poses defined as PG

t(s), and
the corresponding transformation:

T G
t(s−∆s),t(s) =

(
PG

t(s−∆s)

)−1 ·PG
t(s). (2)

The relative transformation error is computed as:

E(∆s,s) =
(
T G

t(s−∆s),t(s)

)−1 ·T L∗
s−∆s,s ∈ SE(3), (3)

where any error metrics for SE(3), such as rotational or trans-
lational error, can be applied. To demonstrate the approach
we employ the translational error according to [4]:

eT (∆s,s) = ∥trans(E(∆s,s))∥ ∈ R+. (4)

Finally, the consistency error is computed as:

eT (s) =
1

(∆sb−∆sa)

∫ ∆sa

∆sb

eT (σ ,s) dσ ∈ R+. (5)

eT (s) represents a metric for the consistency of the local
and global subtrajectory and consequently for the current
quality of localization.

IV. RESULTS

In the implementation, the integral for the consistency
error from Equation 5 is approximated using the trapezoidal
rule, performed on poses sampled over s for ∆sa = 0 and
∆sb = 15m. To evaluate the metric, we used data collected
in a forest setting where the global trajectory was estimated
using a geo-konzept geo-kombi INS/GNSS system, while the
local trajectory was derived from DLO using data from a
Livox MID-360 LiDAR sensor. Figure 2 shows a part of a
trajectory estimated by the GNSS system, where the value

of eT (s) is color coded. The robot moved along the middle
of a forest road. The road shown in the underlying map
can be used as a qualitative reference. It is clearly visible
that the estimate of eT (s) is high for obvious anomalies,
while it is low for regions where the estimate is likely to be
correct. This observation was further confirmed by analyzing
the consistency error over a trajectory of more than 6km,
showing a strong correlation between high error estimates
and significant GNSS inconsistencies.
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Fig. 2. Global GNSS-based trajectory estimate on a forest road with the
corresponding consistency errors eT (s) color coded. For visualization pur-
poses, the local LiDAR odometry-based trajectory estimate is additionally
shown, aligned to the global trajectory estimate using a selected region.

V. CONCLUSION

This work introduces a metric to assess the reliability of
GNSS-based localization in forest environments. It compares
local LiDAR odometry and global GNSS trajectories to
enable real-time anomaly detection and localization quality
monitoring. The metric provides a measure of localization
data consistency that can be used for adaptive sensor fusion
or GNSS rejection strategies. Future work will focus on eval-
uating this method in diverse environments and integrating
it into state estimation frameworks for improved robustness.
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